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1

On a Hilbert space H consider the abstract non-linear problem

d

dt
u(t) = Lu(t) + f(t, u(t)), t ∈ (0, T ), f : [0, T ) × U 7→ H, (1)

u(0) = u0,

where U ⊂ H is an open subset and T > 0.

State assumptions on the operator L : D(L) ⊂ H 7→ H and on f , which are sufficient
to prove existence of a unique, classical, local-in-time (i.e. on a time interval [0, t0) ⊂ [0, T )
for t0 small enough) solution for given initial data u0 ∈ Hα := D((−L)α) for α ∈ [0, 1).
You should give a definition of a classical, local-in-time solution.

Sketch the following central parts of the proof:
With X := C

(

[0, t0],H
)

and ‖x‖X = max06t6t0 ‖x(t)‖ for x ∈ X , define a fixed-point
mapping F : X 7→ X and a suitable subset S ⊂ X , such that (i) F maps S onto S, and
(ii) F is a contraction.

2

Consider a dynamical system {Ut} in C (a subset of some Banach space) and a
stationary point 0 ∈ C. Let V : C 7→ R be a Lyapunov functional with V (0) = 0.

Which properties does V satisfy as a Lyapunov functional?

Show that 0 is stable if V (u) > c(‖u‖) for u ∈ C, where c is a continuous, strictly
monotone increasing function with c(0) = 0.

Show moreover that 0 is asymptotically stable in C if additionally V̇ (u) 6 −c1(‖u‖),
where c1 has the same properties as c.

3

Consider the equation

∂tu = ∂xxu+ f(u), x ∈ R, t > 0,

where f : R 7→ R is a non-linear function with three zeros on the interval [0, 1], i.e.
f(0) = f(1) = f(x0) = 0 with x0 ∈ (0, 1). Moreover, assume that f ′(0) < 0, f ′(x0) > 0,
f ′(1) < 0, and that

∫

1

0
f(u)du > 0.

Construct via phase-plane analysis a travelling wave solution u(t, x) = w(x − ct)
with unique wave speed c, which connects w(−∞) = 0 with w(∞) = 1.

[Hint: draw the phase portrait in the special case c = 0 and argue the changes for positive

waves with speed c < 0.]
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Consider a travelling wave solution u = wc(z), where z = x − ct with c > 0,
wc(−∞) = 1 and wc(∞) = 0, of the equation

∂tu = ∂xxu+ f(u), x ∈ R, t > 0,

where f : R 7→ R is a non-linear function satisfying f(0) = 0, f ′(0) < 0 and f(1) = 0,
f ′(1) < 0.

Consider a small perturbation of the travelling wave, i.e. u(t, x) = wc(z) + ǫv(t, x)
and ǫ ≪ 1. What sort of stability of travelling waves can be expected? Which linear
operator A needs to considered?

Quoting any theorem you rely on, show stability of the essential spectrum with
respect to perturbations v ∈ L2.

What can one say about possible eigenvalues λ satisfying Av = λv with v ∈ L2?
[Hint: Consider ℜ(λ) > 0, for which y(z) = v(z) ecz/2 ∈ L2 and use that

∫

R

(

f ′(wc)−
c2

4

)

y2dz = −

∫

R

[(

y

yc

)′]2

y2c dz +

∫

R

(y′)2dz,

where yc(z) := w′
c(z) e

cz/2.]
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