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On a Hilbert space H consider the abstract non-linear problem

%u(t) = Lu(t) + f(t,u(t)), te(0,7), f:[0,7)xUwH, (1)

u(0) = u,

where U C ‘H is an open subset and 1" > 0.

State assumptions on the operator L : D(L) C H — H and on f, which are sufficient
to prove existence of a unique, classical, local-in-time (i.e. on a time interval [0,¢q) C [0,7)
for tp small enough) solution for given initial data up € Ho := D((—L)%) for a € [0,1).
You should give a definition of a classical, local-in-time solution.

Sketch the following central parts of the proof:
With X := C([0,t0),H) and |[z|x = maxoc<t, [|2(t)|| for € X, define a fixed-point
mapping F : X — X and a suitable subset S C X, such that (i) F maps S onto S, and
(ii) F' is a contraction.

Consider a dynamical system {U;} in C' (a subset of some Banach space) and a
stationary point 0 € C. Let V : C'— R be a Lyapunov functional with V' (0) = 0.

Which properties does V' satisfy as a Lyapunov functional?

Show that 0 is stable if V' (u) > ¢(||ul|) for u € C, where ¢ is a continuous, strictly
monotone increasing function with ¢(0) = 0.

Show moreover that 0 is asymptotically stable in C' if additionally V(u) < —¢1(||ul),
where ¢; has the same properties as c.

Consider the equation
Ou = Ogpu+ f(u), z€R, t>0,

where f : R — R is a non-linear function with three zeros on the interval [0, 1], i.e.
f(0) = f(1) = f(xo) = 0 with g € (0,1). Moreover, assume that f'(0) < 0, f'(zg) > 0,
f'(1) <0, and that [ f(u)du > 0.

Construct via phase-plane analysis a travelling wave solution u(t,z) = w(z — ct)
with unique wave speed ¢, which connects w(—o0) = 0 with w(oco) = 1.

[Hint: draw the phase portrait in the special case ¢ =0 and argue the changes for positive
waves with speed ¢ < 0.]
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Consider a travelling wave solution v = w,(z), where z = x — ¢t with ¢ > 0,
we(—00) =1 and w(oc0) = 0, of the equation

Ou = Opzu+ f(u), xR, t>0,

where f : R — R is a non-linear function satisfying f(0) = 0, f’(0) < 0 and f(1) = 0,
(1) <o.

Consider a small perturbation of the travelling wave, i.e. u(t,z) = w.(z) + ev(t, z)
and € < 1. What sort of stability of travelling waves can be expected? Which linear
operator A needs to considered?

Quoting any theorem you rely on, show stability of the essential spectrum with
respect to perturbations v € L2.

What can one say about possible eigenvalues \ satisfying Av = \v with v € L??
[Hint: Consider R(\) > 0, for which y(z) = v(z)e®*/? € L? and use that

[ (=) [[(2)] 0 i

where yo(z) == wh(z) e®/? ]
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