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SECTION I

1

Given the ODE system y′ = f(y) where f ∈ C∞, we can obtain differential equations
for higher derivatives, y(k) = fk(y), k = 0, 1, . . ., by repeated differentiation. Suppose that
the ODE is solved by the one-step, multiderivative method

n∑

k=0

qkh
kfk(yn+1) =

m∑

k=0

pkh
kfk(yn),

where m,n > 0 are integers and the qk and pk are given coefficients, with q0 = 1. Let

r(z) =

∑m
k=0 pkz

k

∑n
k=0 qkz

k
.

1. Prove that the method is of order p if and only if r(z) = ez +O(zp+1), z → 0.

2. Determine the conditions on the function r that ensure A-stability of the underlying
method.

3. Determine whether the method of order m + n is A-stable for (a) m = 0, n = 2;
and (b) m = 0, n = 3.

2

Consider the two-step method

yn+2 − (1 + a)yn+1 + ayn =
h

2
[(1 + a)f(yn+2) + (1− 3a)f(yn+1)],

and a ∈ R is a parameter, for the solution of the ODE y′ = f(y).

1. Determine the order of the method.

2. For which values of a is the method convergent?

3. For which values of a is the method A-stable?
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3

Let a be a smoothly differentiable function such that a(x, y) > 0, x, y ∈ [0, 1] and
set

Lu = −∇⊤(a∇u), x, y ∈ [0, 1].

1. Prove that L is a positive definite operator on a Hilbert space H (which you
should identify) and, quoting all relevant results, state the variational problem
corresponding to the differential equation

Lu = f, x, y ∈ [0, 1],

given with zero Dirichlet boundary conditions.

2. Let HM be an M -dimensional subspace of H spanned by the basis {ϕ1, ϕ2, . . . , ϕM}.
Derive the linear equations that need be solved once the differential equation is
discretized with the Ritz method in this basis.

3. Propose an appropriate choice of a finite element basis {ϕ1, ϕ2, . . . , ϕM}.

4

We are solving the advection equation ut = ux with the two-step method

un+1
m = α0u

n
m + α1u

n
m+1 + β0u

n−1
m .

1. Find coefficients α0, α1, β0 so that the method is of order 2.

2. The equation is given for x ∈ [−1, 1] with periodic boundary conditions. Prove that,
with the coefficients that you have derived in Part 1, the method cannot be stable
for any µ ∈ (0, 1), where µ is the Courant number.

Part III, Paper 65 [TURN OVER



4

5

Consider the equation

∂u

∂t
=

∂2u

∂x2
+ 2α

∂u

∂x
, t > 0, x ∈ [−1, 1],

where u = u(x, t) and α ∈ R, given with an initial condition for t = 0 and zero Dirichlet
boundary conditions at x = 0, 1.

1. Prove that the equation is well posed in the standard L2[0, 1] norm.

2. The equation is semi-discretized by the central difference approximation

u′m =
um−1 − 2um + um+1

(∆x)2
+ α

um+1 − um−1

∆x
, m = 1, 2, . . . ,M,

where ∆x = 1/(M + 1). Carefully justifying all steps, prove that the semi-
discretization converges to the exact solution of the differential equation in every
compact time interval.
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SECTION II

6

Write an essay on collocation methods for ordinary differential equations.

7

Write an essay on stability analysis of numerical methods for partial differential
equations of evolution using eigenvalue analysis.
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