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(a) Accretion on to a black hole can be modelled within Newtonian dynamics by using
the modified gravitational potential

Φ = −
GM

R−Rs

,

where R = (r2+z2)1/2 is the spherical radial coordinate in terms of cylindrical polar
coordinates (r, φ, z), and Rs is the radius of the event horizon of the black hole.

By constructing an effective potential governing the r and z components of the
equation of motion, or otherwise, determine the orbital frequency Ω(r), the epicyclic
frequency κ(r) and the vertical frequency Ωz(r) of circular orbits of radius r > 3Rs

in the plane z = 0, in this potential. Explain the significance of the result Ωz = Ω.
Show that circular orbits are unstable for 1 < r/Rs < 3. Describe briefly the
transition that occurs in an accretion disc at r = 3Rs.

(b) The surface density of a Keplerian accretion disc is governed by the diffusion
equation

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r
(r1/2ν̄Σ)

]

.

Assuming that the mean effective kinematic viscosity ν̄ is a non-zero constant, find
all solutions of this equation of the form

Σ ∝ ratb exp

(

−
cr2

ν̄t

)

,

valid for t > 0, where a, b and c (with c > 0) are constants to be determined. Do
these solutions conserve the total mass or the total angular momentum of the disc?
Discuss briefly the interpretation of these solutions.

Part III, Paper 63



3

2

The Navier–Stokes equations for a homogeneous incompressible fluid in a rotating
frame of reference are

∂u

∂t
+ u ·∇u+ 2Ω× u = −∇Φ−

1

ρ
∇p+ ν∇2

u ,

∇ · u = 0 .

The velocity field in the local approximation may be written as

u = −Sx ey + v ,

where S is a constant and v is the velocity perturbation (which need not be small).

(i) For a two-dimensional flow in the (x, y) plane, independent of z, show that v can
be derived from a streamfunction ψ satisfying

∂ζ

∂t
+ u ·∇ζ = ν∇2ζ , (1)

where ζ = −∇
2ψ is the vorticity perturbation.

(ii) Show that solutions of equation (1) exist in the form of shearing waves,

ψ = Re
{

ψ̃(t) exp[ik(t) · x]
}

,

and find the equations governing the evolution of the amplitude ψ̃ and the wavevec-
tor k. Determine the dependence of the kinetic energy of non-axisymmetric dis-
turbances on time, and describe this qualitatively in the cases ν = 0 and ν > 0.
Describe briefly how this behaviour compares with that of three-dimensional ax-
isymmetric disturbances in non-rotating and (Rayleigh-stable) rotating shear flows.
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This question is about a mechanical analogue of the magnetorotational instability.

In the local approximation, the dynamics of two particles of mass m connected by
a spring of spring constant k = βm is described by the equations

ẍ1 − 2Ωẏ1 − 2ΩSx1 = β(x2 − x1) ,

ÿ1 + 2Ωẋ1 = β(y2 − y1) ,

z̈1 +Ω2

zz1 = β(z2 − z1) ,

together with similar equations in which the suffixes 1 and 2 are interchanged.

Give a physical interpretation of the equations, explaining the meaning of the
symbols Ω, S and Ωz.

Assume that the quantities β, Ω, S, κ2 = 2Ω(2Ω − S) and Ω2
z are positive. Show

that relative motions of the two particles in the (x, y) plane proportional to exp(λt) are
possible, where

λ4 + (κ2 + 4β)λ2 + 4β(β − ΩS) = 0 .

Determine the range of β for which instability occurs. For fixed Ω and S, find the maximum
growth rate of the instability and the value of β for which this occurs. Write down the
explicit form of x1(t) and x2(t) for this optimal solution.

Discuss the relation of this problem to the magnetorotational instability in astro-
physical discs. In the magnetohydrodynamic case, what quantity would correspond to
β in the above analysis? How is the optimization of the growth rate with respect to β
achieved in the magnetohydrodynamic case?
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