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Define a reference plane that is centred on a nearby star of mass M⋆, at distance d
in parsec, with the Z-axis oriented along the line-of-sight. Consider an object of mass M
orbiting the star with a semimajor axis a in AU and eccentricity e, and choose the X-axis
to be the intersection line between the orbital plane and the sky plane in the direction of
the node at which the motion of the object is toward the observer. Denote the inclination
of the orbital plane with respect to the sky as I and the argument of pericentre measured
from the X-axis as ω.

If the object’s current true anomaly is f , then given r2ḟ =
√

µa(1− e2), where
µ = G(M⋆ +M), show that its projected separation Rsky in arcsec and projected velocity
Vsky in arcsec yr−1 are given by

Rsky = (r/d)[1− sin 2I sin 2(ω + f)]1/2,

Vsky = (A/d)[1 + e2 + 2e cos f − sin 2I[cos (ω + f) + e cosω]2]1/2,

where r = a(1 − e2)(1 + e cos f)−1 is the distance of the object from the star, A =

2π
√

M⋆+M
M⊙a(1−e2)

, and M⊙ is the mass of the Sun.

Show that, for the orbit to remain bound, the combination RskyV
2
sky cannot exceed

max(RskyV
2
sky) =

8π2

d3
M⋆ +M

M⊙
,

and describe the orbital configuration that this maximum value corresponds to.

A planet was recently discovered in orbit around the 2M⊙ star Fomalhaut at 8
parsec. The planet is just interior to a belt of dust that traces out an orbital plane with
an inclination from edge-on of Ibelt = 13◦ and an eccentricity of ebelt ≈ 0.13. It is expected
that the planet has a similar orbital plane and eccentricity to the belt. Show that to first
order in eccentricities and inclinations from edge-on, this observable parameter RskyV

2
sky

must be less than

max(RskyV
2
sky) ≈

8π2

3
√
3d3

M⋆ +M

M⊙
(1 +

√
3e).

In fact the planet’s motion is observed to be 70% faster than this. Discuss what
this suggests about the orbit of the planet, including a consideration of how unknown
perturbers may affect these conclusions, and of how the gravitational interaction between
the planet and the belt can be used to constrain the planet’s orbit further.

Part III, Paper 61



3

2

Consider a coplanar system in which two planets, of masses m2 and m3, orbit a
central mass m1. The reference frame (x′, y′) is centred on m1 and rotates at angular

velocity n0 =
√

Gma−3
0 , where G is the gravitational constant, m = m1 +m2 +m3, and

a0 is the mean distance of the centre of mass of m2 and m3 from m1. Choose units of
length, time and mass so that a0 = n0 = G = 1, and find the equations of motion for m2

and m3 in the (ξ, η) coordinate system, where x′/a0 = 1 + µ1/3ξ and y′/a0 = µ1/3η, and
µ = (m2 +m3)/m ≪ 1, retaining only terms up to lowest order in µ.

Hence show that the equation of relative motion can be written as

ξ̈r − 2η̇r = ∂UH/∂ξr,

η̈r + 2ξ̇r = ∂UH/∂ηr,

where ξr = ξ3 − ξ2, ηr = η3 − η2, UH = (3/2)ξ2r + ρ−1, and ρ2 = ξ2r + η2r .

Show that there is a constant of motion Γ = 3ξ2r +2ρ−1 − ξ̇2r − η̇2r , and and that the
L1 and L2 Lagrange equilibrium points correspond to motion for which this constant is
ΓL1 = 34/3.

Solve the equations of relative motion in the limit ρ ≫ 1 to find that

ξr = D1 cos t
′ +D2 sin t

′ +D3,

ηr = −2D1 sin t
′ + 2D2 cos t

′ − (3/2)D3t
′ +D4,

where the Di are constants of integration, and show that Γ = (3/4)D2
3 −D2

1 −D2
2 .

For Γ > ΓL1 there is a region between the planets that is forbidden, since it would

require ξ̇r
2
+ η̇r

2 < 0. Consider that m2 and m3 are initially on circular orbits about m1

with semimajor axes of a2 and a3. Show that the critical separation between the planets
within which their orbits can cross is given by |a3 − a2|/a0 = 2.31/6µ1/3.
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First order theory gives for the secular evolution of the complex eccentricities of a
system of N planets orbiting a star of mass M⋆:

ż = iAz, (1)

where z = [z1, ..., zN ]T , zi = ei exp i̟i, and A is a matrix with elements

Aji = −(1/4)nj(Mi/M⋆)αjiᾱjib
2
3/2(αji),

Ajj = −
N
∑

i=1,i 6=j

Aji

b13/2(αji)

b23/2(αji)
,

where nj is the mean motion of the j-th planet, Mj is its mass, aj is its semimajor axis,
and αji = ᾱji = aj/ai for ai > aj but αji = ai/aj and ᾱji = 1 otherwise, and b13/2 and

b23/2 are Laplace coefficients.

For a system of two planets where a2 > a1, show that the eigenvalues of A are

λ1 = −(A⋆/2)[f(L1 + L2) +
√

f2(L1 − L2)2 + 4L1L2],

λ2 = −(A⋆/2)[f(L1 + L2)−
√

f2(L1 − L2)2 + 4L1L2],

where Li = Mia
1/2
i , f =

b1
3/2

(α)

b2
3/2

(α)
, α = a1/a2, and A⋆ = −1

4

√

G
M⋆

a
1/2
1

a
5/2
2

b23/2(α). Show that

these eigenvalues are real and comment on the sign and relative magnitude of λ1 and λ2

given f > 1.

For the case that at time t = 0 the eccentricities are e1(0) = 0 and e2(0) 6= 0,
solve equation (1) for the evolution of complex eccentricities z1(t) and z2(t). Describe this
evolution on a plot of e1(t)e2(t) sin [(λ1 − λ2)t] versus e1(t)e2(t) cos [(λ1 − λ2)t].

Show that the maximum eccentricity that planet 1 attains throughout its evolution
is

max[e1(t)/e2(0)] =

[

L1

L2
+

1

4
f2

(

L1

L2
− 1

)2
]−1/2

,

and describe how this depends on L1/L2 for f = 1, 2, and 10.
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In 2010 a dust clump was discovered in the asteroid belt that had been created the
previous year in a collision between two asteroids. This question considers the expected
rate of collisional events that produce dust cross-sectional area above a given level σlim.
The asteroid belt is assumed to have a mass Mtot, volume V , mean relative velocity of
asteroid encounters vrel, and to contain spherical asteroids of mean density ρ that follow a
power law size distribution n(D) ∝ D−α between a maximum size Dmax and minimum size
Dmin ≪ Dmax, where 3 < α < 4. The asteroids’ dispersal threshold follows Q⋆

D = KQD
−a,

where a < 1, and it may be assumed that relative velocities are large so that vrel ≫
√

2Q⋆
D

and vrel ≫ vesc (where vesc is the asteroids’ escape velocity).

The size distribution is in steady state, which means that mass loss rate is
independent of size in bins that are logarithmically spaced in size. For mass loss rates
that are set by the catastrophic collision rate, show that α = (21− a)/(6 − a).

When a target asteroid of size D and mass M is impacted by another of size Dim,
the largest fragment from the target has a mass flrM , where flr = 1 − 0.5Q/Q⋆

D (or
zero for Q > 2Q⋆

D), and Q is the specific incident energy of the collision. The remainder
of the target mass goes into fragments that have a range of sizes following a power law
n(D) ∝ D−αr between Dminr and a maximum size Dmaxr, where 3 < αr < 4. By scaling
the fragment distribution so that the number of fragments larger than Dmaxr that would
have been in this distribution had it continued up to infinity is equal to one, show that
(Dmaxr/D)3 = (1− flr)(4− αr)/(αr − 1).

Thus show that the total cross-sectional area created in collisions between objects
of size D and Dim is given by σtot ∝ (DimDa/3)αr−1 for Dim < Dx and σtot ∝ Dαr−1 for
Dim > Dx, where Dx = [2KQ/v

2
rel]

1/3D1−a/3.

Hence find that the rate of collisions that produce dust cross-sectional area larger
than σlim is Rcol(σtot > σlim) ∝ σγ

lim, where γ = (3a− 18)(6 − a)−1(αr − 1)−1.
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