

### MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2011 1:30 am to 4:30 pm

### PAPER 6

### SEMIGROUPS OF OPERATORS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

1

Suppose that  $(T_t)_{t>0}$  is a contraction semigroup acting on a Banach space E, with infinitesimal generator Z. Define the Laplace transform  $L_{\lambda}$ , for  $\lambda = \mu + i\nu$ , where  $\mu > 0$ . Show that  $L_{\lambda}$  is a bounded linear operator on E which commutes with  $T_t$  and find an upper bound for its norm.

Show that  $L_{\lambda}$  is injective, and determine its image  $L_{\lambda}(E)$ . Explain the sense in which it commutes with Z.

Show that Z is a closed linear operator, and that D(Z) is dense in E.

Show that Z determines the semigroup  $(T_t)_{t>0}$ .

#### $\mathbf{2}$

Suppose that A is a closed linear operator on a Hilbert space H with dense domain D(A). Define the *adjoint* of A.What does it mean to say that A is *symmetric*? What does it mean to say that A is *self-adjoint*?

Suppose that A is symmetric. Show that A is self-adjoint if and only if its spectrum  $\sigma(A)$  is contained in the real line.

Suppose that A is self-adjoint. Show that A is positive semi-definite if and only if  $\sigma(A) \subseteq [0, \infty)$ .

[You may assume that if T is a bounded self-adjoint operator then  $\inf\{\langle T(x), x \rangle : ||x|| = 1\}$  is an approximate eigenvalue for T.]

Suppose that  $(T_t)_{t\geq 0}$  is a contraction semigroup of self-adjoint operators. Show that each  $T_t$  is positive definite.

## CAMBRIDGE

3

Suppose that  $(P_t)_{t\geq 0}$  is a reversible Feller semigroup with invariant probability distribution  $\mu$ , infinitesimal generator L, transition probability measures  $p_t(x, dy)$  and standard algebra A. Suppose that  $f, g \in A$ . Define the squared gradient operator  $\Gamma(f, g)$  and the joint energy  $\mathcal{E}_{\mu}(f, g)$ .

Suppose that  $f \ge 0$ . Define the *entropy*  $\operatorname{Ent}_{\mu}(f)$ . Let  $(f \lor \epsilon)(x) = \max(f(x), \epsilon)$  for  $0 < \epsilon < 1$ . Show that  $\operatorname{Ent}_{\mu}(f \lor \epsilon) \to \operatorname{Ent}_{\mu}(f)$  as  $\epsilon \to 0$ .

What does it mean for  $\mu$  to satisfy a *logarithmic Sobolev inequality* with constant  $c_{LS}$ ?

Find an expression for  $\Gamma(f, g)$  in terms of the transition probability measures. Hence or otherwise show that if  $f \ge 0$  then  $2\mathcal{E}_{\mu}(f, f) \le \mathcal{E}_{\mu}(f^2, \log f)$ .

Suppose that  $\mu$  satisfies a logarithmic Sobolev inequality with constant  $c_{LS}$ , that  $f \in A$  and that  $f \ge 0$ . Show that

$$\operatorname{Ent}_{\mu}(P_t(f)) \leq e^{-4t/c_{LS}} \operatorname{Ent}_{\mu}(f).$$

 $\mathbf{4}$ 

Define the Bernoulli random variables and the Walsh functions on the hypercube  $D_2^d$ , and establish their properties relating to the group structure of  $D_2^d$ . By considering properties of a certain linear operator on  $L^2(D_2^d)$ , show that if  $a_1, \ldots, a_d$  are vectors in a normed space E and  $\epsilon_1, \ldots, \epsilon_d$  are Bernoulli random variables then

$$\left\|\sum_{i=1}^{d} \epsilon_{i} a_{i}\right\|_{2} \leqslant \sqrt{2} \left\|\sum_{i=1}^{d} \epsilon_{i} a_{i}\right\|_{1}.$$

# UNIVERSITY OF

 $\mathbf{5}$ 

Let  $\gamma$  denote standard Gaussian measure on **R**. Define the creation operator  $a^+$  and the annihilation operator  $a^-$ , and show that  $a^-$  is the adjoint of  $a^+$ . (You may assume that  $a^+$  and  $a^-$  are closed, with dense domains.)

4

Explain how the creation operator is used to define the Hermite polynomials  $(h_n)_{n=0}^{\infty}$ , and show that they form an orthogonal sequence in  $L^2(\gamma)$ . How does the annihilation operator act on  $h_n$ ?

Define the number operator N, and show that it is positive semi-definite. Why is it called the number operator? Explain how it is used to define the Ornstein-Uhlenbeck semigroup. (You may assume that the polynomial functions are dense in  $L^2(\gamma)$ .)

Find an expression for the energy  $\mathcal{E}_{\gamma}(f)$  for a differentiable function f with bounded derivative.

The measure  $\gamma$  satisfies a logarithmic Sobolev inequality with constant 2. Use this to show that if f is a continuously differentiable function with  $||f'||_{\infty} \leq 1$  and if  $\int_{-\infty}^{\infty} f(x) dx = 0$  then

$$\gamma(\{x \in \mathbf{R} : f(x) > r\}) \leq e^{-r^2/2} \text{ for } r > 0.$$

#### END OF PAPER