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ASTROPHYSICAL FLUID DYNAMICS

Attempt no more than THREE questions.

There are FOUR questions in total.

The questions carry equal weight.

You are reminded of the equations of ideal magnetohydrodynamics in the form

∂ρ

∂t
+ u · ∇ρ = −ρ∇ · u

∂p

∂t
+ u · ∇p = −γp∇ · u

ρ

(

∂u

∂t
+ u · ∇u

)

= −ρ∇Φ−∇p+
1

µ0
(∇×B)×B

∂B

∂t
= ∇× (u×B)

∇2Φ = 4πGρ
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Starting from the equations of ideal magnetohydrodynamics, show that the equation
of motion of a self-gravitating gas with no external gravitational sources moving under a
magnetic field B and its pressure, p may be written in the form

ρ
Dui
Dt

=
∂Tij
∂xj

,

where the summation convention has been used and

Tij = Dij +Mij

for i, j = 1, 2, 3 are the components of a symmetric stress tensor with

Mij =
1

µ0

(

BiBj −
|B|2

2
δij

)

, and Dij = −pδij −
1

4πG

(

gigj −
|g|2

2
δij

)

.

The components of g are gi = −∂Φ/∂xi, for i = 1, 2, 3.

Prove the tensor virial theorem in the form

1

2

d2Iij
dt2

= 2Kij − Tij +
1

2

∫

A
(xjTik + xiTjk)nkdS,

where the integral is taken over a bounding surface with the components of the outward
unit normal being nk for k = 1, 2, 3. On the surface and in exterior region the density is
negligible,

Iij =

∫

xixjρdV, Kij =

∫

1

2
uiujρdV and Tij =

∫

TijdV

with the integrals being taken over the interior volume.

The initial magnetic field B0 is uniform and the boundary condition at large
distances is that B is ultimately maintained at its initial value with all other quantities
vanishing rapidly enough that they do not produce contributions to the surface integral.
Show that as the bounding surface approaches infinity,

1

2

∫

A
(xjTik + xiTjk)nkdS −

∫

MijdV →

∫

(Mij,0 −Mij)dV,

where Mij,0 is the initial value of Mij . Hence derive the scalar virial theorem in the form

1

2

d2I

dt2
= 2K +Π+W +

∫

1

2µ0

(

|B|2 − |B0|
2
)

dV,

where Π = 3
∫

pdV, I = Iii, and K and W are the total kinetic energy and the total
gravitational energy respectively.

The gas is cold and initially at rest. Show that it will begin to collapse under gravity.
Give an estimate for the change in magnetic energy that needs to occur in order to inhibit
the collapse.
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A steady state axisymmetric magnetohydrodynamic wind is such that the magnetic
field may be written in the form

B = (BR, Bφ, Bz) = −
1

R
eφ ×∇ψ +Bφeφ,

where ψ is the magnetic flux function and eφ is the unit vector in the azimuthal direction
for cylindrical coordinates (R,φ, z).

Show from the continuity and induction equations that velocity field may be written
in the form

u =
kB

ρ
+Rωeφ,

where k(ψ) and ω(ψ) are arbitrary functions of ψ alone.

The azimuthal component of the equation of motion is

ρ
(

u · ∇uφ +
uRuφ
R

)

=
1

µ0

(

B · ∇Bφ +
BRBφ

R

)

Use this to show that

Ruφ =
RBφ

µ0k
+ ℓ,

where the arbitrary function ℓ = ℓ(ψ) depends only on ψ.

Use the above relations to show that

uφ =
R2ω −A2ℓ

R(1−A2)
,

where

A2 =
µ0ρu

2
p

B2
p

,

where up and Bp are the magnitudes of the poloidal components of u and B respectively.
Explain what happens when A = 1, stating any conditions that need to be satisfied. Hence
give an expression for the specific angular momentum carried to infinity by the wind along
an individual field line. Why can magnetohydrodynamic winds be efficient extractors of
angular momentum?
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A spherically symmetric supernova explosion of energy E occurs at time t = 0 in an
ideal non magnetic gas with constant specific heat ratio γ. The undisturbed medium has
density ρ0 = Dr−β where D and β are constants. The shock is located at r = R(t), and
the shock speed is Ṙ. The strong shock conditions relating the state variables at r = R
to undisturbed values may be assumed to be

ρ =

(

γ + 1

γ − 1

)

ρ0, u =
2Ṙ

γ + 1
, and p =

2ρ0Ṙ
2

γ + 1
.

A similarity solution for r < R is sought in terms of dimensionless similarity variable
ξ = r/R(t). The solution has the form

ρ = DR−β ρ̃(ξ), u = Ṙ ũ(ξ), and p = DR−βṘ2 p̃(ξ),

where ρ̃(ξ), ũ(ξ) and p̃(ξ) are dimensionless functions to be determined. Show that for
this solution the total energy of the explosion is

E = 4π

∫ R

0

(

1

2
ρu2 +

p

γ − 1

)

r2dr = 4πR3−βṘ2D

∫ 1

0

(

1

2
ρ̃ũ2 +

p̃

γ − 1

)

ξ2dξ.

Hence deduce that Ṙ/R = 2/[(5 − β)t] and that the shock front expands according to
R ∝ (Et2/D)1/(5−β).

By substituting the similarity solution into the equations of ideal gas dynamics
assuming spherical symmetry, show that the dimensionless functions satisfy the equations

(ũ− ξ)ρ̃′ − βρ̃ = −ρ̃ũ′ −
2ρ̃ũ

ξ
,

(ũ− ξ)ũ′ −
(3− β)

2
ũ = −

p̃′

ρ̃
,

(ũ− ξ)

(

p̃′

p̃
−
γρ̃′

ρ̃

)

− 3 + γβ = 0.

Show that these equations have a solution for which ũ ∝ ξ,
ρ̃ ∝ ξ and p̃ ∝ ξ3 provided that β = (7− γ)/(γ + 1).
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An ideally conducting star immersed in a vacuum (zero current) magnetic field
undergoes linear perturbations about a spherically symmetric hydrostatic equilibrium
state. The Cowling approximation in which perturbations to the gravitational potential
are neglected is adopted. By linearizing the equations of ideal magnetohydrodynamics,
show that the spatial dependence of a small displacement ξ(x) exp(iωt) of the fluid is
governed by the equation

−ω2ρξ = ρFξ =
δρ

ρ
∇p−∇δp +

1

µ0
(∇× δB) ×B,

where ω is the oscillation frequency,

δρ = −∇ · (ρξ), δp = −ξ · ∇p− γp∇ · ξ and δB = ∇× (ξ ×B).

Show that the force operator F is self-adjoint with respect to the inner product

〈η, ξ〉 =

∫

ρη∗ · ξdV.

Here the integral is taken over all space with the star assumed to be embedded in a
perfectly conducting medium with negligible density under the outer boundary condition
that δB and the corresponding vector potential perturbation vanish at infinity. Hence
describe, stating relevant criteria, how the expression

ω2

∫

ρ|ξ|2dV = −〈ξ,Fξ〉 =

∫
(

|δp|2

γp
+ ρN2|ξr|

2

)

dV +
1

µ0

∫

|∇ × (ξ ×B)|2dV,

where N(r) is given by

N2 = −
1

ρ

dp

dr

(

1

γ

d ln p

dr
−
d ln ρ

dr

)

,

can be used, with the help of appropriate trial functions, to determine whether the system
is stable or unstable. Hence show that if N2 > 0 everywhere in the star it will be stable.

END OF PAPER
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