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1

Write down the Cartan-Maurer relations for the left-invariant one-forms of a Lie
group. By taking an exterior derivative, show that consistency requires that the structure
constants satisfy the Jacobi identity.

The vector fields
Lij = −Lji = xi∂j − xj∂i (1)

generate the standard (left) action of SO(n) on R
n, where xi, i = 1, 2, . . . , n are Cartesian

coordinates.

By calculating the Lie Brackets

[

Lij , Lmn

]

= −Cij
pq

mnLpq , (2)

obtain the structure constants Cij
pq

mn of the Lie algebra so(n). Hence give the Maurer-
Cartan relation for the exterior derivative of the left-invariant one-forms. Check the
consistency of your result by taking an exterior derivative. Check that your general result
reduces to the usual one for the case n = 3.
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2

On a general curved four-dimensional spacetime with coordinates (t, xi), i = 1, 2, 3
one may define 3-vectors (E,B,D,H) with components Ei, Bi and Di,Hi in terms of the
Maxwell two-form F and its Hodge dual ⋆F by

F = −Eidt ∧ dxi + 1

2
Bkǫkijdx

i
∧ dxj , ⋆F = Hidt ∧ dxi + 1

2
Dkǫkijdx

i
∧ dxj (1)

where ǫijk = 1 if ijk is an even permutation of 1, 2, 3, ǫijk = −1 if ijk is an odd permutation
of 1, 2, 3, and vanishes otherwise.

By taking an exterior derivative, obtain the four source-free Maxwell equations, in
terms of (E,B,D,H) and show that they are identical to their flat space forms.

If the spacetime metric is static and takes the form

ds2 = −dt2 + gij(x
k)dxidxj , (2)

where gij does not depend upon t, show that the “constitutive relations”

Di = ǫijEj , Bi = µijHj (3)

hold, where ǫij = ǫji and µij = µji are constructed from the determinant of gij and its
inverse gij .

Give expressions for ǫij and µij and hence show that

ǫij = µij . (4)

3

An isotropic simple harmonic oscillator in three dimensions has the Hamiltonian

H = 1

2

i=3
∑

i=1

(

pipi + qiqi

)

. (1)

• Show, by introducing three complex coordinates or otherwise, that the symplectic
form and and Hamiltonian are in invariant under an action of U(3).

• Obtain the moment maps for all of of the generators of the U(3) action.

• By writing down the equations of motion in complex form or otherwise, identify
which element of the Lie algebra u(3) corresponds to the Hamiltonian.

• State which moment maps are linear in pi and which contain terms quadratic in pi.
Give the physical interpretation of the former.
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The action of eleven-dimensional supergravity contains the term

S = 1

2

∫

(

F ∧ ⋆F + kA ∧ F ∧ F
)

(1)

where F is a four-form and A a three-form such that F = dA, and k is a constant.

Obtain the equation of motion for F and explain why it, but not the action S , is
invariant under the gauge transformation A → A+ dΛ.

Obtain the canonical energy momentum tensor for the action S.

5

Define a (left) fibre bundle and a principal bundle. Show that every principal bundle
admits a global right action of the structural group. Show further that a principal bundle
is trivial if and only if it admits a global section.

Define an associated bundle and illustrate your answers by reference to the oth-
onormal frame bundle and the tangent bundle of a manifold. Hence show that the frame
bundle and tangent bundle of a Lie group are trivial.

Give a group theoretic characterization of the orthonormal frame bundles of
Minkowski spacetime, De-Sitter spacetime and Anti-De-Sitter spacetime.
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