1

(a) A point particle of mass m has position $x^{\mu}(\lambda)$ and 4-momentum $p_{\mu}(\lambda)$ in a spacetime with metric $g_{\mu\nu}$ ($\mu, \nu = 0, 1, 2, 3$), where λ is an arbitrary parameter on the particle's worldline. Starting from the action

$$I[x, p, e] = \int d\lambda \left\{ \frac{dx^{\mu}}{d\lambda} p_{\mu} - \frac{1}{2} e \left(g^{\mu\nu} p_{\mu} p_{\nu} + m^2 \right) \right\} \,,$$

where e is a Lagrange multiplier and $g^{\mu\nu}$ the inverse metric, obtain the particle's equations of motion. Explain briefly why the particle moves on a geodesic. Use the equations of motion to show that the quantity $Q_{\xi} = \xi^{\mu} p_{\mu}$ is a constant of the motion if the vector field $\xi = \xi^{\mu} \partial_{\mu}$ is a Killing vector field.

(b) Consider the metric

$$ds^{2} = -F(r)dt^{2} + 2\sqrt{1 - F(r)} dr dt + dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$$
(1)

where $F(r) \to 1$ as $r \to \infty$. Why are the vector fields $k = \partial/\partial t$ and $m = \partial/\partial \phi$ Killing? Using the conservation on geodesics of $Q_k = -\epsilon$ and $Q_m = h$, and assuming $\theta = \pi/2$, show that $\dot{r}^2 + V_{\text{eff}}(r) = \epsilon^2$, where V_{eff} is a function of r that you should find (and \dot{r} is the derivative of r with respect to an affine parameter). Why is no generality lost by the assumption that $\theta = \pi/2$?

(c) Show that a hypersurface $r = \mu$, for constant μ is a null hypersurface of the metric (1) when $F(\mu) = 0$. Show also that if F < 0 for $r < \mu$ then there is no causal future-directed worldline on which a particle passing through this hypersurface could return to $r > \mu$.

State the definition of a Killing horizon, and of its surface gravity κ . Show that a null hypersurface $r = \mu$ of the metric (1) is a Killing horizon, and compute its surface gravity.

(d) By introducing a new time coordinate T = t + p(r) for some function p, show that the metric (1) is equivalent to a static metric. Find the singularities of both this static metric and the metric (1) for the case

$$F = (1 - \mu/r)^2$$
 .

Use your result to explain how the static metric may be analytically continued from $r > \mu$ to $r < \mu/2$.