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(a) In the 3+1 formalism, we split spacetime using the line element

ds2 = −N2dt2 + (3)gij(dx
i −N idt)(dxj −N jdt) ,

with lapse function N(t, xi), shift vector N i(t, xi) and the three-metric (3)gij(t, x
i) on

constant time spacelike hypersurfaces Σ. (Latin indices vary over 1,2,3.) The extrinsic

curvature of Σ is given by Kαβ = Pµ
αP ν

β∇µnν where the projector Pµ
α = δµα + nαn

µ and

nµ is normal to Σ with gµνn
µnν = −1. The derivative operator Di on Σ can be defined

by projecting the 3+1 covariant derivative ∇µ onto Σ using Pµ
i .

(i) Show that Pµ
αPα

ν = Pµ
ν .

(ii) Prove that Dk

(

(3)gij
)

= 0, where we note that the induced metric (3)gij can be

represented as (3)gαβ = Pµ
α P ν

β gµν = gαβ + nαnβ.

(iii) Show also that Pµ
λP

ν
σ ∇ν (P

α
µ) = Kλσ n

α.

(b) When linearising the 3+1 metric about a flat FRW universe ds2 = N̄2dt2−a2dx2,

we define the scalar perturbations by

N(t, xi) ≡ N̄(t)(1 + Φ(t, xi)) , Ni ≡ −a2B,i ,

(3)gij = a2[(1− 2Ψ)δij − 2E,ij ] ,

where bars denote background homogeneous quantities.

Under the change of coordinates

(t, xi) −→ (̃t, x̃i) = (t+ ξ0, xi + ξi)

(with ξi ≡ ∂iλ), metric perturbations transform as

δg̃ij = δgij − ḡij,0ξ
0 − ḡkjξ

k
,i − ḡikξ

k
,j .

The adiabatic perturbation is defined by

ζ = −Ψ+ 1
3

δρ

ρ̄+ P̄

where ρ = ρ̄+ δρ and P = P̄ + δP are the background density and pressure respectively.

(i) Prove that ζ is gauge-invariant.

(ii) Show that ζ is independent of time in the long wavelength approximation.

(iii) Briefly discuss the advantages of using ζ to describe cosmological perturbations.

[You may assume a definite equation of state P = wρ, that the perturbed energy density

conservation equation is

δ̇ρ/N̄ = −3H(δρ+ δP ) + (ρ̄+ P̄ )(κ− 3HΦ)−△u ,

and that the metric perturbation Ψ satisfies

Ψ̇/N̄ = −HΦ+ 1
3κ+ 1

3△χ ,

where △ ≡ ∇2/a2, u generates the scalar velocity perturbation, and κ and χ generate the

trace and traceless part of Kij respectively. ]
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Consider photon propagation in a perturbed FRW universe (flat Ω = 1) with line

element (synchronous gauge):

ds2 = a2(τ)
[

−dτ2 + (δij + hij)dx
idxj

]

. (1)

The photon has four-momentum pµ (pµp
µ = 0) and a comoving observer with four-velocity

uµ = a−1(1, 0, 0, 0) measures the photon energy to be E = −uµp
µ = ap0 ≡ q/a where

q is the comoving momentum. The comoving wavevector k has wavenumber k = |k| and
direction k̂i = ki/k.

(i) Using the geodesic equation dpµ

dλ
+Γµ

νσpνpσ = 0, show that a photon propagating

along a direction n̂ will have a trajectory that satisfies the following to linear order:

dq

dτ
= −1

2
qh′ij n̂

in̂j ,
dn̂i

dτ
= O(hij) .

Briefly discuss the significance of these results for solving the Einstein–Boltzmann equa-

tions at linear order.

[You may assume that the connection to linear order for the metric (1) is given by Γ0
00 =

a′

a
,

Γ0
0i = 0, Γ0

ij =
a′

a
(δij + hij) +

1
2h

′
ij , Γi

0j =
a′

a
δij +

1
2h

′
ij and Γi

jk = 1
2(hij,k + hik,j − hjk,i).]

(ii) Assume that the photon brightness function ∆(xi, n̂i, τ) ≡ 4∆T/T satisfies the

collisionless Boltzmann equation which in Fourier space is given by

∆′ + ikµ∆ = −2h′ij n̂
in̂j , (2)

where µ = k̂ · n̂. If the photon fluid is in equilibrium prior to decoupling τ 6 τdec, we can

approximate its initial conditions at decoupling (τ ≈ τdec) by

∆(k, µ, τdec) = δγ(τdec) + 4n · v(τdec) ,

where δγ and v are the photon density and velocity fluctuations.

Assuming instantaneous decoupling at τ = τdec, integrate (2) from decoupling to the

present day τ = τ0 to find the Sachs–Wolfe formula for the CMB temperature anisotropy

seen at position x in a direction n̂:

∆T

T
(x,n, τ0) =

1

4
δγ(τdec) + n · v(τdec)−

1

2

∫ τ0

τdec

dτh′ij n̂
in̂j . (3)

Explain the meaning of each term in the formula (3), and specify the angular scales on

which these contributions are important. Sketch a typical angular power spectrum for

∆T/T to illustrate these contributions.

Part III, Paper 54 [TURN OVER



4

3

Consider the following term in the interaction Hamiltonian for a non-canonical
theory of inflation

Hint(τ) =

∫

d3x
ǫ

c4s
(ǫ− 3 + 3c2s)a(τ)ζ(x, τ)(ζ

′(x, τ))2 ,

where primes denote derivatives with respect to conformal time τ , i.e. d/dt = a−1d/dτ .
The slow-roll parameter ǫ and the sound speed c2s 6 1 are varying very slowly with time,
so for the purpose of this calculation you can assume that they are constant in time.

During inflation, we can expand the interaction picture field ζI in the following way

ζI(x, τ) =

∫

d3k

(2π)3

[

aI(k)u
∗
k(τ)e

ik·x + a†I(k)uk(τ)e
−ik·x

]

= ζ+I (x, τ) + ζ−I (x, τ) ,

where the mode function has the following solution

uk(τ) =
H√
4ǫcsk3

(1− ikcsτ)e
icskτ .

(i) Using this interaction Hamiltonian, show that the 3-point correlation function
at τ → 0

〈ζ(k1, τ)ζ(k2, τ)ζ(k3, τ)〉 (1)

= Re
〈[

−2iζI(k1, τ)ζI(k2, τ)ζI(k3, τ)
∫ τ

−∞(1+iǫ) dτ
′ a(τ ′)HI

int(τ
′)
]〉

is given by

〈ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)〉 =
ǫ− 3 + 3c2s

ǫ2c4s

H4

16

1

(k1k2k3)3
(2π)3δ(k1 + k2 + k3)(k2k3)

2

(

1

K
+

k1
K2

)

+ 1 → 2 + 1 → 3.

[You may assume that the scale factor a(τ) = −1/(Hτ) and τ runs from −∞ < τ < 0.]

(ii) Write down the contribution to the 3-point correlation function for this interac-
tion term in the following two limits, assuming that ǫ ≈ 0.01,

• c2s → 1,

• c2s ≪ 1.

What is the ratio of non-Gaussianity generated by the above two terms? Compare and
comment on their relative magnitude as a function of c2s.
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(a) Consider the following Lagrange density up to 3rd order in perturbation theory

L =
1

2
ζ̇2 − 1

2
(∂ζ)2 +

1

2
m2

ζζ
2 + αζ̇3 + βζ(∂ζ)2 + γζ(ζ̇)2 . (1)

Calculate the canonical momentum π

π =
∂L
∂ζ̇

. (2)

Hence, calculate the Hamiltonian density for this action H(π, ζ) to third order in
perturbation theory. Identify the interaction Hamiltonian density Hint.

(b) The optimal estimator for stochastic gravity waves detection is given by

SNR2 = 2T

∫ ∞

0
df

Sh(f)
2Γ(f)2

N2(f)
, (3)

where Γ(f) is the overlap reduction function, T is the total integration time of the
experiment, and the noise spectral density of the experiment can be approximated by
the tophat function

N(f) =

{

10−44 Hz−1 , 10 Hz < f < 100 Hz ,
≫ 1 Hz−1 , otherwise.

(4)

The signal spectral density is given by

Sh(f) =
3H2

0

4π2

1

f3
Ωgw(f). (5)

You can assume that Γ(f) = 1 for the following calculation.

(i) Inflation predicts a scale invariant Ωgw(f) which is independent of f , and current
CMB polarization data constrain it to be < 10−14. Assume that the current Hubble
constant is H0 = 100km/s/Mpc, and each parsec 1 pc = 3.26 light years, estimate the
lower bound on the total integration time T in years required for a detection (i.e. SNR> 1).

(ii) Given that for a total integration time of 5 years no detection has been made,
what is the upper bound on a scale-invariant Ωgw(f) given this detector?

[It is sufficient to make order of magnitude estimates. Note that the speed of light
is c = 3× 1010 cm/s and that 1 Hz = 1 s−1. ]

END OF PAPER

Part III, Paper 54


