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(a) In the 3+1 formalism, we split spacetime using the line element
ds* = —N2dt? + @ g;;(da’ — Nidt)(da’ — N7dt),
with lapse function N(t,x?), shift vector N'(t,z°) and the three-metric )g;;(¢,2%) on
constant time spacelike hypersurfaces ¥. (Latin indices vary over 1,2,3.) The extrinsic
curvature of X is given by K3 = P¥ Pé’ uMy where the projector Py = 64 + non# and
n* is normal to ¥ with g,,n#n” = —1. The derivative operator D; on X can be defined
by projecting the 3+1 covariant derivative V,, onto ¥ using P!".

(i) Show that PLP2 = PP,

(ii) Prove that Dy ((3)gij) = 0, where we note that the induced metric (3)gij can be
represented as (3)ga5 = Py Pﬁ” Juv = Jap + NaNng.

(ili) Show also that P¥\P", V, (P%,) = Ky, n“.

(b) When linearising the 3+1 metric about a flat FRW universe ds? = N2dt?—a?dx?,
we define the scalar perturbations by

N(t,z") = N(t)(1 + ®(t,zY)), N; = —a*B,,
@iy = a®[(1 —20)8; — 2B,35],

where bars denote background homogeneous quantities.

Under the change of coordinates
t, 2') — (f, &) = (t +€°, ' + &)
(with ¢ = 9°\), metric perturbations transform as
8355 = 09 — Gij 0" — Gl — G’ .
The adiabatic perturbation is defined by
(=-¥+i—
p

where p = p+ 0p and P = P + 6P are the background density and pressure respectively.
(i) Prove that ¢ is gauge-invariant.
(ii) Show that ¢ is independent of time in the long wavelength approximation.

(iii) Briefly discuss the advantages of using ¢ to describe cosmological perturbations.

[You may assume a definite equation of state P = wp, that the perturbed energy density
conservation equation is

op/N = —3H(6p + 6P) + (p + P)(k — 3H®) — Au,
and that the metric perturbation ¥ satisfies
U/N =-H®+ 1+ 3Ax,

where A = V2/a?, u generates the scalar velocity perturbation, and s and x generate the
trace and traceless part of Kj; respectively. |
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Consider photon propagation in a perturbed FRW universe (flat = 1) with line
element (synchronous gauge):

ds* = a®(1) [—dr® + (6;5 + hyj)da'dz’] . (1)

The photon has four-momentum p# (p,p* = 0) and a comoving observer with four-velocity
ut = a~1(1, 0, 0, 0) measures the photon energy to be E = —u,pht = ap’ = q/a where
q is the comoving momentum. The comoving wavevector k has wavenumber k = |k| and
direction k' = ki /k.

(i) Using the geodesic equation °& d)\ C I'Vep¥p° = 0, show that a photon propagating
along a direction n will have a trajectory that satisfies the following to linear order:

dg 1 A il dii
ar q dr

= O(hi;).

Briefly discuss the significance of these results for solving the Einstein—Boltzmann equa-
tions at linear order.

/

You may assume that the connection to linear order for the metric (1) is given by I'), = <,
y g Y Loo = &
]

I, =0,I% = @ (55 + hig) + shis Thy = L5+ 3hi; and i, = = 2 (hij e + iy — hjki)-

(ii) Assume that the photon brightness function A(z?, A%, 7) = 4AT/T satisfies the
collisionless Boltzmann equation which in Fourier space is given by

A"+ ikpA = =2k ' (2)

where p = k- f. If the photon fluid is in equilibrium prior to decoupling 7 < Tgec, We can
approximate its initial conditions at decoupling (7 & Tgec) by

A(k, M, Tdec) = 57(7_dec) +4n - V(Tdec) )

where ¢, and v are the photon density and velocity fluctuations.

Assuming instantaneous decoupling at 7 = T4, integrate (2) from decoupling to the
present day 7 = 719 to find the Sachs—Wolfe formula for the CMB temperature anisotropy
seen at position x in a direction f:

AT 1 1 [m i
T(X’ n,7y) = 157(Tdec) + 1 V(Tgee) — 3 drhi; i (3)

Tdec
Explain the meaning of each term in the formula (3), and specify the angular scales on

which these contributions are important. Sketch a typical angular power spectrum for
AT/T to illustrate these contributions.
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Consider the following term in the interaction Hamiltonian for a non-canonical
theory of inflation

Hip(1) = /d?’x c£4(€ —3+3)a(r)C(x,7) (¢ (x,7))?,

where primes denote derivatives with respect to conformal time 7, i.e. d/dt = a~'d/dr.
The slow-roll parameter ¢ and the sound speed ¢ < 1 are varying very slowly with time,
so for the purpose of this calculation you can assume that they are constant in time.

During inflation, we can expand the interaction picture field {; in the following way

3 . .
Gilx.m) = [ 2w [ar00uir)e™ + af(0uetr)e ] = ¢ (o) + ¢ (7).

where the mode function has the following solution

H .
U (1) = ————= (1 — ikceT)e™kT.

Vdecg k3

(i) Using this interaction Hamiltonian, show that the 3-point correlation function
at 7 — 0

<C(k177—)C(k27T>C(k37T>> (1)
~ Re < [—%g(kl, 7)Cr (e, 7)Cr (ks m) [T iy a(T')Hgm(T')] >

is given by

(C(k1,0)¢(ke,0)¢(ks,0)) =

E— 2m)?6(ky + ko + k3)(kak =+ —= 1—-2+41 .
T 16 Unkakg)p o) Otk + ke A k) (Roks) <K+K2>+ o2l
[You may assume that the scale factor a(7) = —1/(H7) and 7 runs from —oo < 7 < 0.]

(ii) Write down the contribution to the 3-point correlation function for this interac-
tion term in the following two limits, assuming that € ~ 0.01,

o 21,

QC§<<1.

What is the ratio of non-Gaussianity generated by the above two terms? Compare and
comment on their relative magnitude as a function of c2.
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(a) Consider the following Lagrange density up to 3rd order in perturbation theory
1. 1 1 ) )
L£=5C =500 + 5mEc +al® + B0 +1¢(0)° (1)

Calculate the canonical momentum =

oL

-5 2)

™

Hence, calculate the Hamiltonian density for this action H(m,() to third order in
perturbation theory. Identify the interaction Hamiltonian density Hip:.

(b) The optimal estimator for stochastic gravity waves detection is given by

[e%¢] 2 2
SNR? = 2T /0 df 5%(]@75({) (3)

where I'(f) is the owerlap reduction function, T is the total integration time of the
experiment, and the noise spectral density of the experiment can be approximated by
the tophat function

107 Hz=', 10 Hz < f < 100 Hz,
N(f) = { >1Hz !, otherwise. (4)

The signal spectral density is given by

2
Sulf) = G375 %l )

You can assume that I'(f) = 1 for the following calculation.

(i) Inflation predicts a scale invariant §2g,,(f) which is independent of f, and current
CMB polarization data constrain it to be < 1074, Assume that the current Hubble
constant is Hy = 100km/s/Mpc, and each parsec 1 pc = 3.26 light years, estimate the
lower bound on the total integration time 7" in years required for a detection (i.e. SNR> 1).

(ii) Given that for a total integration time of 5 years no detection has been made,
what is the upper bound on a scale-invariant €24, (f) given this detector?

[It is sufficient to make order of magnitude estimates. Note that the speed of light
is c=3x 10" cm/s and that 1 Hz =1s71. ]
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