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1

The evolution of a homogeneous and isotropic universe
with expansion scale factor a(t) is described by solutions of the
Friedmann equations:

ȧ2

a2
=

8πGρ

3
−

k

a2
+

Λ

3
,

ä

a
= −

4πG

3
(ρ + 3p) +

Λ

3
,

where k is the curvature constant, Λ is the cosmological con-
stant, and ρ and p are the energy density and pressure of the
material content of the universe; overdots denote differentiation
with respect to the comoving proper time, t.

Define the Hubble expansion rate, H , and the decelera-
tion parameter, q, of the universe.

If the universe contains only pressureless ’dust’ and a
cosmological constant, show that

K = 4πGρ − H2(q + 1) ,

where K ≡ ka−2.

Define the ‘surge’ of the expansion by

Q ≡
...
a

aH3
,

and show that

K = H2(Q − 1) ,

Λ = H2(Q − 2q) ,

4πGρ = H2(Q + q) .

Part III, Paper 53



3

Define the density parameters Ωk, Ωm and ΩΛ and ex-

press each of them in terms of q and Q. What does observa-

tional evidence suggest is the approximate value of the surge,

Q, today? What can you conclude from the sign of q today?
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2

Massive particles and antiparticles with mass m and
number densities n(m, t) and n(m, t) are present at time t in the
radiation era of an expanding universe with zero curvature and
no cosmological constant. If they interact with cross-section σ
at velocity v, explain why the evolution of n(m, t) is described
by

∂n

∂t
= −3

ȧ

a
n − nn 〈σv〉 + P (t) ,

where the expansion scale factor of the universe is a(t), and
identify the physical significance of each of the terms appearing
in this equation.

By considering the evolution of the antiparticles, show
that

(n − n)a3 = constant.

Assuming initial particle-antiparticle symmetry, show
that

d(na3)

dt
= 〈σv〉 (n2

eq − n2)a3,

where neq denotes the equilibrium number density.

Define Y ≡ n/T 3 and x ≡ m/T , and show that

dY

dx
= −

λ

x2
(Y 2 − Y 2

eq),

where λ = m3 〈σv〉/H(m), g is the particle spin weight, and
H(m) is the Hubble expansion rate at temperature T = m.

If the number density stays close to its equilibrium value

neq = g(mT/2π)3/2 exp(−m/T ) ,
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in units such that ~ = c = kB = 1, show that the particle-
antiparticle equilibrium is significantly broken when x grows to
a freeze-out value xf determined by

〈σv〉 gmg−1/2

∗ x
1/2

f exp(−xf) = C ,

where g∗ is the total number of relativistic degrees of freedom
in the universe and C is a constant.

When x > xf , the number density, n, can be assumed
to be depleted only by particle-antiparticle annihilations. If λ
is constant show that at late times Y approaches a value given
by

Y∞ =
xf

λ
.

Explain the dependence of Y∞ on 〈σv〉 and sketch the schematic
evolution of Y versus x for both a strongly and a weakly inter-
acting population of annihilating particles and antiparticles.

If there was a speed-up in the expansion rate of the
universe caused by the addition of extra low-mass neutrino
species what would happen to the abundance of surviving
massive particles and why?

For proton and antiproton annihilation the resulting
number densities of surviving protons and antiprotons relative
to the photon number density, nγ, are calculated to be

n

nγ
=

n

nγ
= 10−19.

How does this compare with observational data? What
do you conclude about the abundances of protons and antipro-
tons in the early universe?

Part III, Paper 53 [TURN OVER



6

3 Consider a universe dominated at early times by radi-
ation and pressure-free matter. Denote by Ωr and Ωm their
present-day density parameters. Show that the conformal
Hubble parameter H satisfies

H
2 =

H2
0Ω

2
m

Ωr





1

y
+

1

y2



 ,

where H0 is the present value of H and y ≡ a/aeq is the ratio
of the scale factor to its value when the energy density of the
matter and radiation are equal.

Describe qualitatively the behaviour of the conformal-
Newtonian-gauge (CNG) fractional density perturbations δr

and δm for a scalar perturbation at scale k, with adiabatic initial
conditions, that re-enters the Hubble radius well before aeq.

For perturbations on scales much smaller than the
Hubble radius, the fluctuations in the radiation can be ne-
glected. The continuity and Euler equations for the matter,
and the 00 Einstein equation are then

.
δm +∇

2vm − 3
.
φ = 0 ,

.
vm +Hvm + φ = 0 ,

∇
2φ − 3H

( .
φ +Hφ

)

= 4πGa2ρmδm ,

where ∂ivm is the peculiar velocity of the matter, φ is the
CNG metric perturbation, ρ̄m is the background matter density,
and dots denote derivatives with respect to conformal time.
Assuming that φ evolves on a Hubble timescale, show that

..
δm +H

.
δm −4πGa2ρmδm ≈ 0 . (∗)
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Show further that, in terms of the variable y, equation (∗)
becomes

d2δm

dy2
+

2 + 3y

2y(1 + y)

dδm

dy
−

3

2y(1 + y)
δm = 0 .

Hence verify that the solutions are

δm ∝ 2 + 3y ,

δm ∝ (2 + 3y) ln







√
1 + y + 1

√
1 + y − 1





 − 6
√

1 + y .

Argue that δm grows like ln y for y ≪ 1 but as y for y ≫ 1.
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4 Consider inflation driven by a single scalar field Φ with
potential V (Φ). Given that the stress-energy tensor of a scalar
field is

Tµν = ∇µΦ∇νΦ − gµν





1

2
∇

ρΦ∇ρΦ − V (Φ)



 ,

derive expressions for the energy density and pressure of a ho-
mogeneous scalar field Φ(t) in an unperturbed flat, Robertson-
Walker geometry. Hence show that the equation of motion for
the field is

∂2

t Φ + 3H∂tΦ + V ′(Φ) = 0 ,

where H is the Hubble parameter and primes denote derivatives
with respect to Φ.

What is meant by slow-roll inflation? Defining slow-roll
parameters,

ǫV ≡
M 2

Pl

2







V ′

V







2

, ηV ≡ M 2

Pl

V ′′

V
,

where M 2

Pl
= 1/(8πG) is the reduced Planck mass, calculate

the value of ǫV at the end of inflation assuming slow-roll holds
up until this point.

Given that the power spectrum of the comoving curva-
ture perturbation R from slow-roll inflation is

PR(k) ≈







H2

2π∂tΦ







2

,

where the right-hand side is evaluated at horizon exit (k = aH),
show that the spectral index ns(k) = 1 + d ln PR(k)/d ln k is

ns(k) = 1 + 2ηV (Φ) − 6ǫV (Φ)
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to leading-order in the slow-roll parameters.

Observations indicate a power-law spectrum PR(k) with
amplitude As ≈ 2.44 × 10−9 at a typical cosmological scale k0

and 1 − ns = 0.037 ± 0.012. Assuming modes at k0 exited the
horizon N = 60 e-folds before the end of inflation, show that
a potential V = m2Φ2/2 is consistent with these observations
and estimate the ratio m/MPl.

END OF PAPER
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