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(a)(i) Explain how the Newtonian equation of motion of a par-
ticle in a time-independent gravitational field can be obtained
from the geodesic equation in a spacetime with metric

ds2 = −(1+2Φ(x, y, z))dt2 +(1−2Φ(x, y, z))(dx2 +dy2 +dz2)

where |Φ| ≪ 1.

(ii) Show that the Einstein equation implies that a time-
independent gravitational field produced by a weak, time-
independent, non-relativistic, distribution of matter must be
described by a metric of the above form, where Φ satisfies
Newton’s law of gravitation. (You may quote the linearized
Einstein equation from Q3 below.)

(b) A certain satellite is expected to malfunction after time
T . The satellite follows the innermost stable circular orbit
(r = 6M ) around a Schwarzschild black hole of mass M , with
metric

ds2 = −



1 −
2M

r



 dt2+



1 −
2M

r





−1

dr2+r2
(

dθ2 + sin2 θ dφ2
)

How many orbits will the satellite complete before it malfunc-
tions?
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(a) Consider an infinitesimal variation of the spacetime metric
gab → gab + δgab.

(i) Show that the corresponding change in the Levi-Civita
connection is given by

δΓa
bc =

1

2
gad (∇cδgdb + ∇bδgdc − ∇dδgbc)

where ∇ is the Levi-Civita connection associated to gab.

(ii) Show that the change in the Ricci tensor is

δRab = ∇cδΓc
ab − ∇bδΓc

ac

(You may use the formula for the components of the Riemann
tensor in a coordinate basis:

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµ

νρ + Γτ
νσΓµ

τρ − Γτ
νρΓ

µ
τσ

)

(iii) Show that the change in the Ricci scalar is

δR = −Rabδgab + ∇a∇bδgab − ∇c∇c

(

gabδgab

)

(b) Consider a theory of gravity coupled to a scalar field defined
by the action

S =
∫

d4x
√

−g eΦ
(

R + gab∇aΦ∇bΦ
)

Derive the equations of motion that arise from varying the scalar
field and the metric. Hence show that

Rab = ∇a∇bΦ

(You may use without proof the formula δg = ggabδgab.)
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In the study of linearized perturbations of Minkowski spacetime
it is assumed that there exist global coordinates xµ = (t, x) with
respect to which the metric has components

gµν = ηµν + hµν

where the components of hµν have absolute values much smaller
than 1.

(a) Diffeomorphisms are a gauge symmetry in General Relativ-
ity. By considering the effect of a 1-parameter family of diffeo-
morphisms φs for small s, explain why linearized theory has the
gauge symmetry hµν → hµν + 2∂(µξν) where ξµ is small.

(b) Let h̄µν = hµν − (1/2)h ηµν where h = ηµνhµν. Explain
why one can impose the gauge condition

∂µh̄µν = 0.

(c) The linearized Einstein equation in the above gauge is

∂ρ∂ρh̄µν = −16πTµν

Consider a localized distribution of matter. Let r2 = x
2. Show

that, for large r,

h̄ij(t, x) ≈

2

r
Ïij(t − r)

where indices i, j refer to spatial directions, a dot denotes a
derivative, and

Iij(t) =
∫

d3x xixjT00(t, x)
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(d) State the quadrupole formula for the power radiated in
gravitational waves. Consider a pair of particles of mass m
connected by a spring of negligible mass undergoing simple
harmonic motion, with positions x = ±d(1/2 + (1/4) sin ωt),
y = z = 0. Determine the average power radiated in grav-
itational waves. (You may assume that the motion is non-
relativistic so the energy density of a single particle at x(t)
is T00 = m δ3(x − x(t)).)
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(a) In global coordinates, the metric on de Sitter spacetime is

ds2 = −dt2 + L2 cosh2(t/L)
[

dχ2 + sin2 χ
(

dθ2 + sin2 θ dφ2
)]

(i) Is there anything special about points with t = 0? Give a
brief explanation of your answer.

(ii) Explain how to construct the Penrose diagram of this
spacetime. What do the surfaces I

± in this diagram represent?

(iii) Explain the concept of a cosmological horizon using de
Sitter spacetime as an example.

(b) What is a particle horizon in a FLRW universe? Explain
what is meant by the horizon problem in cosmology.

(c) The Friedmann equation is





ȧ

a





2

=
8π

3
ρ −

k

a2

(i) Assume that the universe contains pressureless matter with
energy density ρm, and a cosmological constant Λ. For k = 1,
show that there is a critical value for ρm for which a(t) is
independent of time. Determine a in terms of Λ.

(ii) Is this solution stable if ρm is perturbed from its critical
value? Explain your reasoning.
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