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Throughout this exam let [A,B] = AB −BA be the usual matrix commutator and

X =

(

0 1
1 0

)

, Y =

(

0 −i
i 0

)

, Z =

(

1 0
0 −1

)

, I =

(

1 0
0 1

)

the usual Pauli matrices.
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1 Controllability, Reachability, Constructive Control
(a) Briefly define the notions of a bilinear Hamiltonian control system, reachable

set and controllability.

(b) Define the notions of pure-state and density operator controllability for quantum
systems. Give simple Lie algebraic criteria for both concepts for bilinear Hamiltonian
control systems.

(c) Consider the density operators for a system with Hilbert space dimension N = 2
(qubit):

ρ0 =
1

4

(

3 0
0 1

)

, ρ1 =
1

2

(

1 −1
−1 1

)

, ρ2 =
1

4

(

2 1
1 2

)

, ρ3 =

(

0 0
0 1

)

. (1)

Which of the states are unitarily equivalent?

(d) Assume a two-level system evolves according to the control-dependent dynam-
ical law

i~ρ̇(t) = [Z + f(t)X, ρ(t)], (2)

where ρ(t) is a density operator defined on H = C
2. Explain (i) if the systems is

controllable and (ii) which of ρk defined in (1) are reachable from each other by applying
a suitable (open-loop) control function.

(e) Consider a spin network with the Hamiltonian

H0 =
∑

16m<n6N

αmn(XmXn + YmYn + κZmZn) (3)

where Xn (respectively, Yn, Zn) denotes an N -fold tensor product, all of whose factors are
the identity I except for the nth factor, which is the Pauli matrix X (respectively, Y , Z);
e.g. for a network with 3 spins we would have X2 = I ⊗X ⊗ I. Let S =

∑N
n=1 Zn.

(i) Using the identities XY = iZ, Y Z = iX, ZX = iY , show that [H0, S] = 0.

(ii) Assume we have a control Hamiltonian H1 = Zk for some fixed k ∈ {1, . . . , N}.
Is the bilinear control system defined by H[f(t)] = H0 + f(t)H1 controllable? Briefly
explain why or why not.
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2 Constructive Control, Rotating Frame and Rotating Wave Approxima-
tion

(a) Let U(t) be the solution of the Schrodinger equation i~ d
dtU(t) = H[f(t)]U(t)

with U(0) = I and H[f(t)] = H0 + f(t)H1, where H0,H1 are Hermitian operators on
H = C

N , and I is the identity operator on H. Show that the interaction picture evolution
operator UI(t) = U0(t)

†U(t) with U0(t) = exp(−itH0/~) satisfies

i~
d

dt
UI(t) = f(t)HI(t)UI with HI(t) = U0(t)

†H1U0(t). (1)

(b) Consider the bilinear Hamiltonian control system given by H[f(t)] = H0 +
f(t)H1, where

H0 =





−ω1 0 0
0 0 0
0 0 −ω2



 , H1 =





0 d1 0
d1 0 d2
0 d2 0



 , ω1, ω2, d1, d2 ∈ R (2)

Choosing units such that ~ = 1, show that the interaction picture Hamiltonian is

HI(t) =





0 d1e
−iω1t 0

d1e
iω1t 0 d2e

iω2t

0 d2e
−iω2t 0



 . (3)

(c) Assume f(t) = A1(t) cos(ω1t) and ∆ω = ω2 − ω1. Using (3) and 2 cos(x) =
eix + e−ix, show that

f(t)HI =
A1(t)

2









0 d1 0

d1e
i2ω1t 0 d2e

i(2ω1+∆ω)t

0 d2e
−i∆ωt 0



+





0 d1e
−i2ω1t 0

d1 0 d2e
i∆ωt

0 d2e
−i(2ω1+∆ω)t 0







 .

(4)
Explain under what assumptions can we simplify

f(t)HI ≈
A1(t)d1

2





0 1 0
1 0 0
0 0 0



 . (5)

(d) Assuming the simplifying assumptions in part (c) hold, applying control fields
of the form B1,x(t) = f1(t) cos(ω1t), B1,y(t) = f2(t) sin(ω1t), B2,x(t) = f3(t) cos(ω2t),
B2,y(t) = f4(t) sin(ω2t), respectively, gives rise to a Hamiltonian of the form

H = Ω1(t)x12 +Ω2(t)y12 +Ω3(t)x23 +Ω4(t)y23, (6)

where xmn and ymn are generalized Pauli matrices, i.e., here

x12 =





0 1 0
1 0 0
0 0 0



 , y12 =





0 −i 0
i 0 0
0 0 0



 , x23 =





0 0 0
0 0 1
0 1 0



 , y23 =





0 0 0
0 0 −i
0 i 0



 .

(7)
Explain how we implement any unitary operator in SU(3) by applying a sequence of
simple pulses that effect rotations about x12, y12, x23, y23. Sketch the general algorithm
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for decomposing a special unitary operator in to a sequence of operations on 2D subspaces
and further decompose these rotations using the Euler decomposition.

(e) Explain how we can transfer population from level 1 to level 3 for the three-level
system with the effective Hamiltonian (6) above without populating level 2.

3 Optimal & Adaptive Control
(a) Sketch a simple block-diagram of a control system. Explain what is special

(compared to the classical case) about the roles the sensors (measurements), actuators and
environment play when the system to be controlled is governed by the laws of quantum
physics. Briefly explain the difference between open-loop and closed-loop control.

(b) Define suitable objective functions for the problems of quantum state engineer-
ing, quantum process (gate) engineering and observable optimization.

(c) Let ‖X‖HS =
√

Tr(X†X) be the Hilbert-Schmidt (HS) norm. Show that the
HS-distance between two unitary operators U andW on the Hilbert spaceH ≃ C

N satisfies

‖W − U‖2HS = 2N − 2ReTr[W †U ]. (1)

(d) Let H = H0 + f(t)H1 be a bilinear control system, where f(t) is a piecewise
constant control function f(t) = fk for tk−1 < t 6 tk with tK = T . Let Uf (T ) be the
solution of the Schrodinger equation iU̇ (t) = [H0+ f(t)H1]U(t) for the piecewise constant
control f(t) above and U(0) = I. First show that

Uf (t, tk−1) := Uf (t2)Uf (t1)
† = exp[−i(t− tk−1)(H0 + fkH1)] (2)

for tk 6 t 6 tk−1, then show that

∂Uf (T )

∂fk
= Uf (tK , tK−1) · · ·Uf (tk+1, tk) Ik Uf (tk−1, tk−2) · Uf (t1, t0), (3)

where

Ik =

∫ tk

tk−1

Uf (tk, t)(−iHm)Uf (t, tk−1)dt. (4)

(e) Use Eq. (3) to derive an expression for the gradient of the normalized error
E(f) = 1

N ‖W − Uf (T )‖2HS with respect to the control variables fk.
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4 Feedback Control & Stabilization
(a) Sketch the basic setup for measurement-based feedback control using homodyne

detection.

(b) Consider the reduced Bloch equation for a single qubit subject to direct feedback

d

dt

(

x(t)
z(t)

)

= −1

2

(

(2λ+ 1)2 −4α
4α (2λ+ 1)2 + 1

)(

x(t)
z(t)

)

−
(

0
2λ+ 1

)

. (1)

where x(t) = Tr(Xρ(t)), z(t) = Tr(Zρ(t)) and X, Z are the Pauli operators defined above.
Show that except for (α, λ) = (0,−1

2 ), the reduced system has a unique steady state given
by

xss = −8α(2λ + 1)/D, zss = −2(2λ+ 1)3/D, (2)

where D = (2λ+ 1)2[(2λ+ 1)2 + 1] + 16α2.

(c) Show that the state (x, z) = (sin θd, cos θd) is a steady state of the system if the
driving and feedback strengths α and λ, respectively, are set to

α =
1

4
sin θd cos θd, λ = −1

2
(1 + cos θd). (3)

(e) In the standard semi-classical model of quantum control the goal is to control
a quantum system using external fields produced by essentially classical actuators and
measurements. An alternative approach is to replace the classical controller by another
quantum system that acts as a quantum controller. A very simple example of such a
system is a cavity that interacts with a quantized external field. Let b0, b1 and a be
stochastic operators representing the input, output and cavity mode, respectively. It can
be shown that for a simple cavity with cavity decay rate γ we obtain the following linear
control system

d

dt
a(t) = −γ

2
a(t)−√

γb0(t) (4a)

b1(t) =
√
γa(t) + b0(t). (4b)

By taking the Laplace transform of the equations, show that b̃1(s) = G(s)b̃0(s) with gain

function G(s) = s−γ/2
s+γ/2 , where b̃0(s) = L[b̂0(t)](s) and b̃1(s) = L[b̂1(t)](s) are the Laplace

transforms of b0(t) and b1(t), respectively, and apply Nyquist’s stability criterion to decide
if the cavity-field system is stable.

Hint: The Laplace transform L is linear and satisfies L[ ddta(t)](s) = sL[a(t)](s) assuming
a(0) = 0.
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