MATHEMATICAL TRIPOS Part III

Thursday, 9 June, 2011 9:00 am to 12:00 pm

PAPER 44

STRING THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

 $Cover \ sheet$

SPECIAL REQUIREMENTS

None

Treasury Tag

 $Script \ paper$

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

What is the Nambu-Goto action for the closed bosonic string?

2

Describe how this is a generalization of the action for a point particle.

Construct the Polyakov action for the closed bosonic string in d-dimensional Minkowski spacetime starting from the Nambu-Goto action.

Describe all of the symmetries of this theory.

Describe carefully how one shows that closed bosonic string theory is a theory containing gravitons if d = 26.

UNIVERSITY OF

 $\mathbf{2}$

The amplitude for the scattering of four tachyons in closed bosonic string theory is

$$A = Cg_s^2 \delta(\text{momentum conservation}) \times \frac{\Gamma(-1 - \alpha' s/4)\Gamma(-1 - \alpha' t/4)\Gamma(-1 - \alpha' u/4)}{\Gamma(2 + \alpha' s/4)\Gamma(2 + \alpha' t/4)\Gamma(2 + \alpha' u/4)}$$

where α' is the inverse string tension, g_s is the string coupling constant, s, t and u are the Mandelstam variables for the scattering process and C is some normalization constant. Sketch a derivation of this formula starting from the Polyakov action.

[You are not required to give detailed derivations, nor to evaluate complicated integrals, but to summarize and explain the steps leading to this result.]

The amplitude contains a set of poles when viewed as a function of any of s, t or u. Explain the physical meaning of these poles.

In what ways does this result differ from fourparticle scattering amplitudes found in the quantum field theory of scalars with a cubic coupling?

[TURN OVER

UNIVERSITY OF

3

Explain what is meant by the terms quasi-primary operator of weight (h, \bar{h}) , and primary operator in a conformal field theory.

Two anti-commuting operators are b and c and their equation of motion is $\bar{\partial}b = \bar{\partial}c = 0$. Their operator product expansion is given by

$$b(z)c(w) = -c(w)b(z) = \frac{1}{z-w} + \dots$$

with no singular terms in the expansion of either b(z)b(w)or c(z)c(w). Consider the stress tensor

$$T = :(\partial b)c : -\lambda\partial : bc : \quad , \quad \bar{T} = 0.$$

where λ is real. Show that b and c are primary operators and find h and \overline{h} for both fields b and c. What is the central charge of this system? 4

Consider a single free spin-1/2 fermion ψ on the world sheet of a closed string in Minkowski spacetime. The action for such a field is

5

$$\int d^2 x \bar{\psi} \; \gamma^\mu \partial_\mu \psi$$

Develop the mode expansions for both the NS and R sectors of the left-movers for this field in the lightcone gauge. Find expressions for the Virasoro operators in both R and NS sectors.

Show that the Virasoro algebra has commutation relations

$$[L_m, L_n] = (m - n)L_{m+n} + C(n)\delta_{n+m}, 0.$$

Show that C(n) = -C(-n).

By using the Jacobi identity, or otherwise, show that $C(n) = c_3 n^3 + c_1 n$.

Evaluate c_1 and c_3 for both the NS and R sectors.

END OF PAPER