MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2011 1:30 pm to 4:30 pm

PAPER 43

SYMMETRIES AND PARTICLES

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

You may use the property of Pauli matrices, $\sigma_i \sigma_j = \delta_{ij} I + i \epsilon_{ijk} \sigma_k$.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

1

The generators of the isospin algebra satisfy

$$[I_3, I_{\pm}] = \pm I_{\pm}, \quad [I_+, I_-] = 2I_3.$$

 $\mathbf{2}$

What is meant by a highest weight state, $|jj\rangle$, in a representation of this algebra?

Determine the finite set of normalized states (i.e., states of unit norm), $|jm\rangle$, in the isospin-*j* representation obtained by acting on $|jj\rangle$ a number of times with I_{-} .

Explain how the tensor operator, T_{kq} , transforms under isospin, where k is the total isospin and q = -k, -k + 1, ..., k.

State the Wigner–Eckart theorem for the matrix element

$$\langle \alpha', j'm' | T_{kq} | \alpha, jm \rangle$$

of T_{kq} between states of total isospin j and j' with eigenvalues of I_3 equal to m and m', respectively. The symbols α and α' denote other quantum numbers.

Explain why this element is non-zero only if $j' \in \{j+k, j+k-1, \dots, |j-k|+1, |j-k|\}$.

The Δ states are baryons of total isospin 3/2. Explain why, according to their description in terms of quarks, they have total angular momentum 3/2 (assuming the quarks in the Δ do not carry orbital angular momentum).

Making use of the Wigner-Eckart theorem find the ratios of the decay widths

$$\frac{\Gamma(\Delta^+ \to n\pi^+)}{\Gamma(\Delta^+ \to p\pi^0)}, \qquad \frac{\Gamma(\Delta^0 \to n\pi^0)}{\Gamma(\Delta^0 \to p\pi^-)},$$

where π^{\pm} , π^{0} are pions and p, n are the proton and neutron.

[The decay width for a process $I \to J$, $\Gamma(I \to J)$, is proportional to the square of the amplitude, $|A(I \to J)|^2$.]

 $\mathbf{2}$

Briefly explain what is meant by a *Lie algebra*.

Consider the matrix group GL(n) consisting of $n \times n$ matrices, M, that have an expansion close to the identity of the form $M = I + X + O(X^2)$. The complex matrix X is in the Lie algebra \mathcal{L}_n and can be written as $X = (R^i_{\ j}) X^j_{\ i}$ and the n^2 basis matrices $\{R^i_{\ j}: 1 \leq i, j \leq n\}$ are defined by

$$(R^i{}_j)^p{}_q = \delta^{ip}\delta_{qj}\,,$$

 $(1 \leq p, q \leq n)$ so the matrix $R^i_{\ j}$ has 1 in the *i*'th row and *j*'th column and is zero elsewhwere.

Determine the commutation relations of the $R^i_{\ j}$'s and hence determine the structure constants in this basis.

By considering $[X, R^{i}{}_{j}]$ and using the general definition of the adjoint representation show that the adjoint representation of X has the form

$$(X^{ad})^{l}{}_{k}{}^{i}{}_{j} = X^{i}{}_{k}\delta^{l}{}_{j} - X^{l}{}_{j}\delta^{i}{}_{k}.$$

Show that the Killing form $K(X, Y) = tr(X^{ad}Y^{ad})$ can be written as

$$K(X,Y) = 2\left(n\sum_{i,j} X^{j}_{\ i} Y^{i}_{\ j} - \sum_{i} X^{i}_{\ i} \sum_{j} Y^{j}_{\ j}\right) \,.$$

What conditions need to be imposed on the matrices X^{i}_{j} in order for the group corresponding to \mathcal{L}_{n} to be:

(a) U(n); (b) SU(n); (c) SO(n)?

How can you see from the expression for the Killing form that the group of $n \times n$ matrices, U(n), contains an invariant abelian subgroup, whereas SU(n) does not?

Show that upper triangular matrices of the form

$$X(x,y,z) = \begin{pmatrix} 0 & x & y \\ 0 & 0 & z \\ 0 & 0 & 0 \end{pmatrix} ,$$

with real x, y and z, form a subalgebra of \mathcal{L}_3 .

What is the element of GL(3) obtained by exponentiating X(x, y, z)?

3

Group multiplication for a Lie Matrix group, G, may be expressed as the relation $g(\mathbf{a}) g(\mathbf{b}) = g(\mathbf{c})$, so that \mathbf{c} defines a point on the group manifold that is reached by multiplying the element at \mathbf{a} by that at \mathbf{b} . Show that the infinitesimal shift $\mathbf{a} \to \mathbf{c} = \mathbf{a} + d\mathbf{a}$ produced by an infinitesimal transformation $d\mathbf{b}$ close to the origin has the form

4

$$\mathrm{d}a_i = \mathrm{d}b_j \mu^j_{\ i}(\mathbf{a}) \,,$$

for i, j = 1, ..., n where n is the dimension of G.

What is meant by a G-invariant function, f(g)?

Show that for a n-dimensional Lie group G the G-invariant integral of a G-invariant function, f, over the group manifold has the form

$$\int_G d\rho(\mathbf{a}) f(g(\mathbf{a})) \,,$$

where $g(\mathbf{a}) \in G$ and the form of the measure $d\rho(\mathbf{a})$ should be determined.

The group $GL(2,\mathbb{R})$ consists of real 2×2 matrices that can be expressed as

$$A = a_0 + a_1 \,\sigma_1 + a_2 \,\sigma_2 + a_3 \,\sigma_3 \,,$$

where σ_i (i = 1, 2, 3) are the Pauli matrices and coefficients a_0 , a_1 are real. Find the condition satisfied by these coefficients for the matrices to define the group $SL(2, \mathbb{R})$ of real 2×2 matrices with unit determinant.

Determine the matrix $\mu_{i}^{j}(\mathbf{a})$ for this group.

Show that the invariant integration measure for the group $SL(2,\mathbb{R})$ has the form

$$\mathrm{d}\rho(\mathbf{a}) = \frac{1}{|a_0|} \,\mathrm{d}^3 a_i \,.$$

Hence, show that the group $SL(2,\mathbb{R})$ is non-compact.

 $\mathbf{4}$

The Lie algebra \mathcal{L} of a semi-simple group G has a maximally commuting subalgebra generated by $\underline{H} = (H_1, \ldots, H_r)$. The remaining generators $E_{\underline{\alpha}}, E_{\underline{\beta}}, \ldots$, correspond to roots $\underline{\alpha}, \underline{\beta}, \ldots$, where, for any root $\underline{\alpha}, [H_i, E_{\underline{\alpha}}] = \alpha_i E_{\underline{\alpha}}$. Furthermore,

$$[E_{\underline{\alpha}}, E_{\underline{\beta}}] = c_{\underline{\alpha}\,\underline{\beta}} \, E_{\underline{\alpha}+\underline{\beta}} \quad (\underline{\alpha}+\underline{\beta}\neq 0) \,,$$

where $c_{\underline{\alpha}\underline{\beta}} \neq 0$ if $\underline{\alpha} + \underline{\beta}$ is a root and $c_{\underline{\alpha}\underline{\beta}} = 0$ otherwise.

Prove that if $\underline{\alpha}$ is a root then so is $-\underline{\alpha}$.

Show how, with a suitable choice of normalisation, the algebra can be expressed in the form $2\alpha \cdot \beta$

$$[H_{\underline{\alpha}}, H_{\underline{\beta}}] = 0, \qquad [E_{\underline{\alpha}}, E_{-\underline{\alpha}}] = H_{\underline{\alpha}}, \qquad [H_{\underline{\alpha}}, E_{\underline{\beta}}] = \frac{2\underline{\alpha} \cdot \underline{\beta}}{|\underline{\alpha}|^2} E_{\underline{\beta}},$$

where

$$H_{\underline{\alpha}} = \frac{2\underline{\alpha} \cdot \underline{H}}{\underline{\alpha}^2} \,,$$

and the scalar product is with respect to the Killing form.

Suppose that $[E_{\underline{\alpha}}, E_{\underline{\beta}+n_{+}\underline{\alpha}}] = 0$ for some value of n_{+} , where $\underline{\alpha}$ and $\underline{\beta}$ are roots. Explain why the finite set of roots (i.e., the root string) $\{E_{\underline{\beta}-n_{-}\underline{\alpha}}, E_{\underline{\beta}-(n_{-}-1)\underline{\alpha}}, \dots, E_{\underline{\beta}+n_{+}\underline{\alpha}}\}$ furnishes a finite-dimensional representation of SU(2), where

$$n_{-} = n_{+} + \frac{2\underline{\alpha} \cdot \underline{\beta}}{\underline{\alpha}^{2}} \,.$$

Show that the angle θ between two root vectors, $\underline{\alpha}$ and $\underline{\beta}$, is constrained so that

$$0 \leqslant mn = 4\cos^2\theta \leqslant 4$$
, and $\frac{|\underline{\alpha}|^2}{|\underline{\beta}|^2} = \frac{|m|}{|n|}$,

where m, n are integers.

Define the simple roots, $\underline{\alpha}_{(i)}$ and show that $\underline{\alpha}_{(1)} \cdot \underline{\alpha}_{(2)} < 0$, where $\underline{\alpha}_{(1)}$ and $\underline{\alpha}_{(2)}$ are two distinct simple roots.

The rank two Lie algebra of the 14-dimensional simple group G_2 has simple roots $\underline{\alpha}_{(1)} = (1,0)$ and $\underline{\alpha}_{(2)} = (-3,\sqrt{3})/2$ (in a Cartesian basis). Use this information to sketch the root diagram for G_2 .

END OF PAPER

Part III, Paper 43