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The generators of the isospin algebra satisfy

[I3, I±] = ±I± , [I+, I−] = 2I3 .

What is meant by a highest weight state, |jj〉, in a representation of this algebra?

Determine the finite set of normalized states (i.e., states of unit norm), |jm〉, in the

isospin-j representation obtained by acting on |jj〉 a number of times with I−.

Explain how the tensor operator, Tkq, transforms under isospin, where k is the total

isospin and q = −k,−k + 1, . . . , k.

State the Wigner–Eckart theorem for the matrix element

〈α′, j′m′|Tkq|α, jm〉

of Tkq between states of total isospin j and j′ with eigenvalues of I3 equal to m and m′,

respectively. The symbols α and α′ denote other quantum numbers.

Explain why this element is non-zero only if j′ ∈ {j+k, j+k−1, . . . , |j−k|+1, |j−k|}.
The ∆ states are baryons of total isospin 3/2. Explain why, according to their

description in terms of quarks, they have total angular momentum 3/2 (assuming the

quarks in the ∆ do not carry orbital angular momentum).

Making use of the Wigner–Eckart theorem find the ratios of the decay widths

Γ(∆+ → nπ+)

Γ(∆+ → pπ0)
,

Γ(∆0 → nπ0)

Γ(∆0 → pπ−)
,

where π± , π0 are pions and p , n are the proton and neutron.

[The decay width for a process I → J , Γ(I → J), is proportional to the square of

the amplitude, |A(I → J)|2.]
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Briefly explain what is meant by a Lie algebra.

Consider the matrix group GL(n) consisting of n × n matrices, M , that have an

expansion close to the identity of the form M = I +X +O(X2). The complex matrix X

is in the Lie algebra Ln and can be written as X = (Ri
j)X

j
i and the n2 basis matrices

{Ri
j : 1 6 i, j 6 n} are defined by

(Ri
j)

p
q = δipδqj ,

(1 6 p, q 6 n) so the matrix Ri
j has 1 in the i’th row and j’th column and is zero

elsewhwere.

Determine the commutation relations of the Ri
j ’s and hence determine the structure

constants in this basis.

By considering [X,Ri
j ] and using the general definition of the adjoint representation

show that the adjoint representation of X has the form

(Xad)l i
k j = Xi

k δ
l
j −X l

j δ
i
k .

Show that the Killing form K(X,Y ) = tr(XadY ad) can be written as

K(X,Y ) = 2



n
∑

i,j

Xj
i Y

i
j −

∑

i

Xi
i

∑

j

Y j
j



 .

What conditions need to be imposed on the matrices Xi
j in order for the group

corresponding to Ln to be:

(a) U(n); (b) SU(n); (c) SO(n)?

How can you see from the expression for the Killing form that the group of n × n

matrices, U(n), contains an invariant abelian subgroup, whereas SU(n) does not?

Show that upper triangular matrices of the form

X(x, y, z) =





0 x y

0 0 z

0 0 0



 ,

with real x, y and z, form a subalgebra of L3.

What is the element of GL(3) obtained by exponentiating X(x, y, z)?
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Group multiplication for a Lie Matrix group, G, may be expressed as the relation

g(a) g(b) = g(c), so that c defines a point on the group manifold that is reached by

multiplying the element at a by that at b. Show that the infinitesimal shift a → c = a+da

produced by an infinitesimal transformation db close to the origin has the form

dai = dbjµ
j
i(a) ,

for i, j = 1, . . . , n where n is the dimension of G.

What is meant by a G-invariant function, f(g)?

Show that for a n-dimensional Lie group G the G-invariant integral of a G-invariant

function, f , over the group manifold has the form

∫

G

dρ(a) f(g(a)) ,

where g(a) ∈ G and the form of the measure dρ(a) should be determined.

The group GL(2,R) consists of real 2× 2 matrices that can be expressed as

A = a0 + a1 σ1 + a2 σ2 + a3 σ3 ,

where σi (i = 1, 2, 3) are the Pauli matrices and coefficients a0, a1 are real. Find the

condition satisfied by these coefficients for the matrices to define the group SL(2,R) of

real 2× 2 matrices with unit determinant.

Determine the matrix µj
i(a) for this group.

Show that the invariant integration measure for the group SL(2,R) has the form

dρ(a) =
1

|a0|
d3ai .

Hence, show that the group SL(2,R) is non-compact.
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The Lie algebra L of a semi-simple group G has a maximally commuting subalgebra

generated by H = (H1, . . . ,Hr). The remaining generators Eα, Eβ, . . ., correspond to

roots α, β, . . ., where, for any root α, [Hi, Eα] = αi Eα. Furthermore,

[Eα, Eβ] = cαβ Eα+β (α+ β 6= 0) ,

where cαβ 6= 0 if α+ β is a root and cαβ = 0 otherwise.

Prove that if α is a root then so is −α.

Show how, with a suitable choice of normalisation, the algebra can be expressed in

the form

[Hα,Hβ] = 0 , [Eα, E−α] = Hα , [Hα , Eβ] =
2α · β
|α|2 Eβ ,

where

Hα =
2α ·H
α2

,

and the scalar product is with respect to the Killing form.

Suppose that [Eα , Eβ+n
+
α] = 0 for some value of n

+
, where α and β are roots. Ex-

plain why the finite set of roots (i.e., the root string) {Eβ−n
−

α, Eβ−(n
−

−1)α, . . . , Eβ+n
+
α}

furnishes a finite-dimensional representation of SU(2), where

n
−

= n
+
+

2α · β
α2

.

Show that the angle θ between two root vectors, α and β, is constrained so that

0 6 mn = 4cos2 θ 6 4 , and
|α|2
|β|2 =

|m|
|n| ,

where m,n are integers.

Define the simple roots, α(i) and show that α(1) · α(2) < 0, where α(1) and α(2) are

two distinct simple roots.

The rank two Lie algebra of the 14-dimensional simple group G2 has simple roots

α(1) = (1, 0) and α(2) = (−3,
√
3)/2 (in a Cartesian basis). Use this information to sketch

the root diagram for G2.
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