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1 How many simple kG-modules are there up to isomorphism when G = SL(2, p) and
k is an algebraically closed field of characteristic p. Briefly justify your answer. Describe
them, proving that they are simple.

2 Define what is meant by a block B of the group algebra kG when k is a field of
characteristic p and G is a finite group. Define the defect group of B and show that it is
isomorphic to a p-subgroup of G.

Let the characteristic of k be 2. For kS3 describe the simple and the indecomposable
projective modules. What are the blocks, and their defect groups?

3 Let k be a field and G be a finite group.

Define what is meant by a vertex of an indecomposable left kG module.

Show that if B is a block with defect group D then any indecomposable left kG-
module lying in B has vertex contained in D.

4 Let k be a field of characteristic p.

Show that if a group G has order pa then the only simple kG-module is the trivial
one.

Let N be a normal subgroup of a finite group H with the order of H/N equal to p.
Show that if V is an indecomposable left kN -module then the kH-module induced from
V is also indecomposable.

5 Let k be a field and A be a k-algebra.

Define the Hochschild cohomology groups HHn(A,A) and define the dimension
Dim(A) of A.

What does it mean for A to be a separable k algebra? Show that A is a separable
k-algebra if and only if Dim(A) = 0. Show that if this is the case then A is a finite
dimensional k vector space and is semisimple.

Give an example of a k-algebra A with Dim(A) = 1. Justify your answer.

6 Write an essay about the relationship between the Hochschild cohomology of a
k-algebra and its deformation theory.
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