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John has a coin with unknown probability θ of coming up heads. He tells me he
has flipped it until it first came up heads, which happened on flip y + 1, after y tails had
occurred.

(a) Why is y an observation from a geometric distribution p(y|θ) = (1 − θ)yθ, y =
0, 1, 2, ..?

(b) Define the Jeffreys prior pJ(θ) for a scalar parameter θ and derive its form for this
geometric distribution. Can you express this distribution as a limiting member of a
parametric family?

(c) Assuming the Jeffreys prior pJ(θ), what is the posterior distribution for θ?

(d) Prove in general that, for any 1-1 function µ(θ), pJ(µ) = pJ(θ)
∣

∣

∣

dθ
dµ

∣

∣

∣
.

(e) The mean of the geometric distribution is E[Y ] = µ = (1/θ)−1. Express the sampling
density p(y|µ) in terms of µ, and find the form for pJ(µ).

(f) Suppose John now tells me that he lied about flipping the coin until he got a head: he
just flipped the coin y + 1 times, got y tails and 1 head in some order and then got
bored. We can assume that y is an observation from a Binomial distribution with

index y+1 and parameter 1− θ, so that p(y|θ) =

(

y + 1
y

)

(1− θ)yθ. The Jeffreys

prior for the Binomial model is known to be a Beta(12 ,
1
2) distribution. What is the

posterior distribution for θ under this Binomial model and Jeffreys prior?

(g) Compare the posterior means of θ under the geometric model with its Jeffreys prior
and the Binomial model with its Jeffreys prior.

(h) State the likelihood principle.

(i) Do the above conclusions obey the likelihood principle?

[A Beta(a, b) distribution has density p(θ|a, b) = Γ(a+b)
Γ(a)Γ(b) θa−1 (1 − θ)b−1; θ ∈ (0, 1). Its

mean is a/(a+ b).]
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Suppose we have an observation y assumed to arise from a density p(y|θ), which
can be transformed to a member of the natural exponential family p(t|φ) = eα(t)eφt−k(φ),
where t = t(y) and φ = u(θ) are the natural observation and parameter.

(a) Describe a family of prior densities that is conjugate to p(t|φ), and show why the
family is conjugate.

(b) Assume that y is a single Bernoulli observation with p(y|θ) = θy(1−θ)1−y. Show that
this can be transformed to the natural exponential family and provide expressions
for t, φ and k(φ).

(c) Find an expression proportional to the conjugate prior density for a Bernoulli
observation expressed in terms of φ.

(d) Find the corresponding posterior distribution for φ after observing a Binomial

observation r ∼ Bin(n, θ) with p(r|n, θ) =

(

n
r

)

θr(1− θ)n−r.

(e) Show that this posterior for φ is equivalent to a Beta posterior for θ.

(f) Suppose we observe another Binomial observation r̃ ∼ Bin(m, θ), assumed condition-
ally independent of r given θ. What form does the posterior distribution p(θ|r̃, r)
take?

(g) Suppose, in a general parametric model, we wish to derive the predictive distribution
for a new observation ỹ assumed conditionally independent of y given θ. By
expanding the joint density of p(ỹ, θ|y) in two different ways, or otherwise, prove
that, for any θ,

p(ỹ|y) =
p(ỹ|θ) p(θ|y)

p(θ|ỹ, y)
.

(h) Use the above expression to derive the predictive distribution for a subsequent
Binomial observation r̃.

[A Beta(a, b) distribution has density p(θ|a, b) = Γ(a+b)
Γ(a)Γ(b) θa−1 (1 − θ)b−1; θ ∈ (0, 1). Its

mean is a/(a+ b).]
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An insurance company takes a sample of n = 35 customers and adds up the number
of claims each has made in the past year to give y1, .., yn. These form the following
distribution, where mk =

∑

i I(yi = k) is the number of y′s that equal k

k 0 1 2 3 4 5

mk 10 5 10 7 2 1

The total number of claims in the sample is
∑

k kmk = 59 and the average number of
claims per customer is

∑

k mk/35 = 1.69. The company wants to use this sample to
estimate the mean number of claims µ per customer in the last year. They know that the
mean number of claims per customer varies from year to year, and in past years this mean
has varied around 2 claims per year with an approximate standard deviation of 0.5.

(a) If we assume a Poisson sampling model p(yi|µ) = e−µµyi/y! with mean µ, why might
it be convenient to assume a Gamma prior distribution for µ?

(b) What specific Gamma distribution would be appropriate?

(c) What is the posterior distribution for µ assuming this sampling model and prior?

(d) Someone now points out that there seem to be rather a lot of customers making no
claims, which may make the Poisson assumption inappropriate. Let G = m0m2/m

2
1.

For this data-set, calculate G. In data that genuinely come from a Poisson
distribution, what (approximately) would it be reasonable to expect as a value
for G? Why might G be a good statistic to use as a checking function?

(e) How might we use replicate data to check whether our observed value of G is unusual
under a Poisson assumption? [You can use rough BUGS code - it does not have to
be syntactically correct]

(f) On the basis of this analysis we decide the Poisson model is not realistic, and use the
following BUGS code for what is known as the ‘zero-inflated Poisson’ model.

for ( i in 1:35){

y[i] ~ dpois(mean[i]) (1)

mean[i] <- (1-group[i])*mu (2)

group[i] ~ dbern(p) (3)

}

Describe the model expressed by the code in lines (1) to (3), and interpret the
parameters p (p) and µ (mu).

(g) In terms of p and µ, what is the mean of the distribution being fitted? In terms of p
and µ, what is the overall expected proportion of zero-claims?

(h) Briefly, how might you use historical data to assess a joint prior distributions for p, µ?

[A Gamma(a, b) distribution has density p(λ|a, b) = ba

Γ(a) λa−1 e−λb; λ ∈ (0,∞), with

mean a/b and variance a/b2.]
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The figure below shows measurements of the weights in grams of 30 rats taken at
8, 15, 22, 29 and 36 days of age.

Days
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0
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0

30
0

35
0

Rat 9

Let Yij be the weight of rat i at weighing j at age xj days. The Yij are assumed to be
drawn independently from a Normal(µij , σ

2) distribution, and each rat’s expected weight
µij changes linearly with age xj and has a different intercept and gradient for each rat, so
that µij = βi1 + βi2(xj − x), where x = 22 is the mean age at weighing.

We first assume a hierarchical model (Model 1) in which the intercepts have a
distribution βi1 ∼ Normal(µβ1

, τ21 ), and the gradients are dependent on the intercepts,
with distribution βi2|βi1 ∼ Normal(µβ2

+ γ(βi1 − µβ1
), τ22 ). Given the hyper-parameters

(µβ1
, µβ2

, γ, τ1, τ2), (βi1, βi2) are independent across rats. The full model is described using
the following WinBUGS code:

for( i in 1 : 30 ) {

for( j in 1 : 5 ) {

y[i , j] ~ dnorm(mu[i , j], invsigma2)

mu[i , j] <- beta[i , 1] + beta[i , 2] * (x[j]-mean(x[]))

}

beta[i , 1] ~ dnorm(mu.beta[1], invtau2[1])

mean.beta[i,2]<- mu.beta[2]+gamma*(beta[i,1] - mu.beta[1])

beta[i , 2] ~ dnorm(mean.beta[i,2], invtau2[2])

}

for(i in 1:2){

mu.beta[i] ~ dunif(-1000,1000)

invtau2[i] <- 1 / (tau[i]*tau[i])

tau[i] ~ dunif(0,100)

}

gamma ~ dunif(-100,100)

invsigma2 ~ dgamma(0.001, 0.001)

sigma <- 1 / sqrt(invsigma2)

(a) How would you interpret the intercept βi1? Examining the data by eye, would you say
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it might be reasonable to model each gradient as dependent on the corresponding
intercept? What is the interpretation of γ?

(b) What advantage should there be in centring the covariate around its mean? Briefly,
what advantage might there be in fitting this conditional model rather than directly
modelling the intercept and gradient as coming from a bivariate normal distribution?

(c) Explain briefly the prior distributions given to the parameters, in particular why the
prior given to the random-effects variance parameters τ21 and τ22 is different from
that given to σ2.

(d) Analysing the data assuming Model 1 gave the following output:

node mean sd MC error 2.5% median 97.5% start sample

mu.beta[1] 242.7 2.7 0.04 237.2 242.7 248.0 1001 10000

mu.beta[2] 6.19 0.11 0.002 5.97 6.19 6.41 1001 10000

gamma 0.024 0.007 0.0001 0.011 0.024 0.037 1001 10000

sigma 6.09 0.47 0.008 5.26 6.06 7.11 1001 10000

tau[1] 14.87 2.14 0.023 11.35 14.66 19.71 1001 10000

tau[2] 0.406 0.091 0.002 0.241 0.400 0.599 1001 10000

How would you interpret the results for γ? Is the Monte Carlo error sufficiently
small to accept these Monte Carlo estimates of the posterior means?

(e) Someone looks at the plot and suggests that maybe it is reasonable to assume all the
gradients are the same. What parameter constraints would this be equivalent to?
Would the output from Model 1 suggest this was reasonable?

(f) You decide to use a prior model assuming a constant gradient (model 2). Write rough
BUGS code to do this.

(g) The following table shows the DIC output based on 10000 iterations when fitting the
models 1 and 2.

Dbar pD DIC

Model 1 (random gradients) 966.8 51.5 1018.350

model 2 (equal gradients) 1058.3 30.4 1088.720

Interpret these results, in particular the pD column.

(h) Rat 9 could be an outlier. Briefly, how might you check whether this is the case?

(i) How might you adapt the code for Model 1 to allow some rats to have outlying
gradients?

(j) Suppose you take a single weighing of a new rat and it weighs 180 gms at 8 days, a
little heavier than rat 9 at that age. How would you predict what its growth will
be? Would you expect the predicted growth to stay above that of rat 9?
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