MATHEMATICAL TRIPOS Part III

Friday, 10 June, 2011 1:30 pm to 3:30 pm

PAPER 30

SCHRAMM-LOEWNER EVOLUTIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Let $(K_t)_{t\geq 0}$ be a family of compact \mathbb{H} -hulls. Define the local growth property. Explain what is meant by the Loewner transform $(\xi_t)_{t\geq 0}$ of $(K_t)_{t\geq 0}$, justifying why it is well-defined.

(b) Let $(\xi_t)_{t\geq 0}$ be a continuous real-valued path with $\xi_0 = 0$. Explain what is meant by the Loewner flow driven by $(\xi_t)_{t\geq 0}$, and explain how to define an expanding family of compact \mathbb{H} -hulls $(K_t)_{t\geq 0}$ from it. [You are not required to show that K_t is indeed a compact \mathbb{H} -hull.]

(c) Let $(K_t)_{t\geq 0}$ have the local growth property, and let $(\xi_t)_{t\geq 0}$ be its Loewner transform. Show that $(\xi_t)_{t\geq 0}$ is continuous.

Assume that hcap $(K_t) = 2t$ for all $t \ge 0$. Let g_t be conformal isomorphism from $H_t = \mathbb{H} \setminus K_t$ onto \mathbb{H} such that $g_t(z) - z \to 0$ as $z \to \infty$. Show that $(g_t)_{t\ge 0}$ is the Loewner flow driven by $(\xi_t)_{t\ge 0}$.

[You may use without proof the following estimates on conformal maps: if K is a compact \mathbb{H} -hull and $K \subset \xi + r\mathbb{D}$ for some $\xi \in \mathbb{R}, r > 0$, then

$$|g_K(z) - z| \leqslant 3r$$

for all $z \in H = \mathbb{H} \setminus K$, and

$$|g_K(z) - z - \frac{\operatorname{hcap}(K)}{z - \xi}| \leqslant \frac{Cr\operatorname{hcap}(K)^2}{(z - \xi)^2}$$

for all $z \in H$ such that $|z - \xi| \ge 2r$. Here g_K denotes the conformal isomorphism from H to \mathbb{H} such that $g_K(z) - z \to 0$ as $z \to \infty$.]

UNIVERSITY OF

 $\mathbf{2}$

(a) Let $\alpha \in (0, \pi)$. Let $\gamma(t)$ be the curve in \mathbb{H} defined by $\gamma(t) = r(t)e^{i\alpha}$, where $r(t) \ge 0$ is chosen so that if $K_t = \gamma((0, t])$, then $\operatorname{hcap}(K_t) = 2t$. Let $(\xi_t)_{t\ge 0}$ be the Loewner transform of $(K_t)_{t\ge 0}$. Show that for all $\lambda > 0$, $g_{\lambda^2 t}(z) = \lambda g_t(z/\lambda)$. Deduce that there exists a (necessarily unique) $C_\alpha \in \mathbb{R}$ such that $\xi_t = C_\alpha \sqrt{t}$ for all $t \ge 0$.

(b) Let z = iy with y > 1, and let B be a Brownian motion starting from z. Choose t > 0 such that $|\gamma(t)| = 1$, let $K = K_t$ and set $H = \mathbb{H} \setminus K$ and $T = \inf\{t \ge 0 : B_t \notin H\}$. Define ∂_- and ∂_+ as follows. Say that $B_T \in \partial_-$ if there exists a sequence $t_n < T$ with $t_n \uparrow T$ such that $\arg(B_{t_n}) > \alpha$, where if $z \in \mathbb{C}$ then $\arg(z) \in (-\pi, \pi]$ denotes the argument of z. Otherwise, say that $B_T \in \partial_+$. Argue that if $\alpha \le \pi/2$, then $\mathbb{P}(B_T \in \partial_-) \ge \mathbb{P}(B_T \in \partial_+)$.

[Hint: let $I = [0, \gamma(t)]$ and let I^* denote the reflection of I with respect to the imaginary axis. Let τ be the hitting time of the unit circle C, and assume $\tau < T$. Consider the random time S defined as the last time that the Brownian motion B hits C before touching $I \cup I^* \cup \mathbb{R}$, and observe that the law of B_S is symmetric with respect to the imaginary axis.]

(c) Let g_K be conformal isomorphism from H onto \mathbb{H} such that $g_K(z) - z \to 0$ as $z \to \infty$. Taking $K = K_t$ where t is chosen as above (i.e., so that $|\gamma(t)| = 1$), draw a picture to represent the effect of the transformation g_K , highlighting in particular where different pieces of the boundary of H are mapped (you are not expected to justify that this picture is correct).

Deduce from (b) and conformal invariance of Brownian motion that $C_{\alpha} \ge 0$ if and only if $\alpha \le \pi/2$.

UNIVERSITY OF

3

Let $\kappa \ge 0$ and let g_t be the Loewner flow associated with an $SLE(\kappa)$ curve. Let K_t denote the corresponding hull and $H_t = \mathbb{H} \setminus K_t$, where \mathbb{H} is the complex upper-half plane. Let $\zeta(z) = \inf\{t \ge 0 : z \in K_t\}$ (for $z \in \overline{\mathbb{H}} \setminus \{0\}$), and let $\xi_t = -\sqrt{\kappa}B_t$ be the associated Loewner transform (hence B is a standard Brownian motion).

(a) State the Loewner differential equation, and deduce that if $x \in \mathbb{R} \setminus \{0\}$, then for all $t < \zeta(x)$,

$$\frac{d}{dt}g'_t(x) = -\frac{2g'_t(x)}{(g_t(x) - \xi_t)^2}$$

You may exchange the order of differentiation without justification.

(b) Justify briefly that $g'_t(x) > 0$ for $t < \zeta(x)$. Let $v_t = \log g'_t(x)$. Find an equation for dv_t/dt , and deduce that for all b > 0,

$$g'_t(x)^b = \exp\left(-ab\int_0^t \frac{1}{X_s(x)^2} ds\right), \quad t < \zeta(x),$$

where $a = 2/\kappa$ and $X_t(x) = (g_t(x) - \xi_t)/\sqrt{\kappa}$. Explain why this implies that for each fixed $t, g'_t(x)$ is increasing in $x \in (r_t, \infty)$, where $r_t = \sup\{\bar{K}_t \cap \mathbb{R}\}$.

(c) Assume that $x \in (0, \sqrt{\kappa})$. Show that $dX_t(x) = dB_t + (a/X_t(x))dt$ for $t < \zeta(x)$ and $X_0(x) = x/\sqrt{\kappa} \in (0, 1)$. Set $\sigma = \inf\{t \ge 0 : X_t(x) \in \{0, 1\}\}$. Let $Z_t = \exp(-ab \int_0^{t \wedge \zeta(x)} ds/X_s(x)^2)$, and let $\phi(x) = \mathbb{E}(Z_{\sigma})$. Check that

$$\mathbb{E}(Z_{\sigma}|\mathcal{F}_t) = \phi(X_{t \wedge \sigma}) Z_{t \wedge \sigma},$$

where $(\mathcal{F}_t)_{t\geq 0}$ is the filtration generated by $(B_t)_{t\geq 0}$. Deduce that

$$\phi''(x) + \frac{2a}{x}\phi'(x) - \frac{2ab}{x^2}\phi(x) = 0.$$

[You may use without proof that ϕ is twice continuously differentiable.]

CAMBRIDGE

 $\mathbf{4}$

(a) Define the notion of chordal $SLE(\kappa)$ in a domain D from a boundary point z_0 to a boundary point z_1 , taking care to explain to what extent it is uniquely specified. Explain what is meant by the locality property.

5

(b) Show that SLE(6) has the locality property. In your proof you may use without proof the fact that if $\Phi: N \to N^*$ is a conformal isomorphism from a neighbourhood N in \mathbb{H} of a segment of the real line I to another neighbourhood N^* of a segment $I^* \subset \mathbb{R}$, then $\operatorname{hcap}(K_t^*) = 2 \int_0^t \Phi'_t(\xi_s)^2 ds$ and $\dot{\Phi}_t(\xi_t) = -3\Phi''_t(\xi_t)$. Here $(K_t)_{t\geq 0}$ is a family of compact \mathbb{H} -hulls with local growth, parametrized so that $\operatorname{hcap}(K_t) = 2t$, with Loewner transform ξ_t . $K_t^* = \Phi(K_t), \ \Phi_t = g_t^* \circ \Phi \circ g_t^{-1}$ with $g_t = g_{K_t}$ and $g_t^* = g_{K_t^*}$, and these identities are true for $t < T = \inf\{t \ge 0: K_t \notin N \cup (\partial N \cap \mathbb{R})\}$.

(c) Let Δ denote the equilateral triangle with vertices a = 0, b = 1, $c = e^{i\pi/3}$. Let ϕ denote a map from \mathbb{H} to Δ such that $\phi(0) = a$, $\phi(1) = b$, $\phi(\infty) = c$. Why does ϕ exist? Is it uniquely defined? Explain why for x > 1, $\phi(x) = 1 + e^{2i\pi/3}\phi((x-1)/x)$. [Hint: consider the conformal maps $z \mapsto f(z) = 1/(1-z)$ and $z \mapsto g(z) = 1 + e^{2i\pi/3}z$.]

(d) Let γ be an SLE(6) curve in Δ from 0 to 1. Let $t^* = \inf\{t \ge 0 : \gamma_t \in [b, c]\}$. Why is t^* well-defined? Show that γ_{t^*} is uniformly distributed on the segment [b, c]. [You may use without proof results about hitting probabilities of $SLE(\kappa)$ on the real line, provided that the result is clearly stated. You may also use without proof that the map $\phi(z)$ from part (c) has the expression

$$\phi(z) = c \int_0^z \frac{dw}{w^{2/3}(1-w)^{2/3}},$$

where c is chosen so that $\phi(1) = 1$.]

END OF PAPER