

MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2011 1:30 pm to 3:30 pm

PAPER 29

PERCOLATION AND RELATED TOPICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Consider bond percolation on the square lattice with edge-density $p = \frac{1}{2}$. Let $A_{m,n}$ be the event that there exists an open path traversing the rectangle $[0, m] \times [0, n]$ from left to right.

 $\mathbf{2}$

(a) Prove that there exist strictly positive constants α_1 , α_2 such that: for all $m \ge 1$,

$$\mathbb{P}(A_{m,m}) > \alpha_1, \qquad \mathbb{P}(A_{2m,m}) > \alpha_2.$$

(b) Deduce that, for any r = 2, 3, ..., there exists $\alpha_r > 0$ such that: for all $m \ge 1$, $\mathbb{P}(A_{rm,m}) > \alpha_r$.

(c) Let $\rho \ge 1$, and let R be a rectangle of \mathbb{R}^2 with side-lengths $a, \rho a$. [You may not assume that the sides of R are parallel to the axes.] Let A_R be the event that there exists an open path of the lattice containing a sub-path traversing R between its two short sides. Outline a proof that there exists a constant $\alpha_{\rho} > 0$, independent of a and R, such that $\mathbb{P}(A_R) > \alpha_{\rho}$.

2 Consider bond percolation on the *d*-dimensional cubic lattice \mathbb{Z}^d .

(a) Explain how to construct an increasing family $(\eta_p : p \in [0, 1])$ of processes such that η_p is a bond percolation process with density p.

(b) Define the critical probability p_c , and state the uniqueness theorem for the number of infinite open clusters in a percolation process.

(c) Let I_p be the event that the origin lies in some infinite open path in η_p . Show that I_p is increasing in p. Deduce that the percolation probability $\theta(p) = \mathbb{P}(I_p)$ satisfies

$$\theta(p) - \theta(p-) = \mathbb{P}\left(I_p \cap \left\{\bigcap_{p' < p} \overline{I_{p'}}\right\}\right),$$

where $\theta(p-) = \lim_{p' \uparrow p} \theta(p')$ and $\overline{I_{p'}}$ is the complement of $I_{p'}$.

(d) Deduce that θ is a left-continuous function on the interval $(p_c, 1]$.

UNIVERSITY OF

3

(a) Let μ be a probability measure on the product space $\Sigma = \{-1, 1\}^V$, where V is a finite set. State the FKG inequality, including a careful formulation of the FKG lattice condition subject to which it is valid.

(b) Let $\Lambda_n = [-n, n]^d$, viewed as the vertex-set of a finite subgraph of the *d*-dimensional cubic lattice \mathbb{Z}^d . The Ising measure on Λ_n is the probability measure on $\Sigma_n = \{-1, 1\}^{\Lambda_n}$ given by

$$\phi_n(\sigma) = \frac{1}{Z} e^{-H(\sigma)}, \qquad H(\sigma) = -\beta \sum_{u \sim v} \sigma_u \sigma_v - h \sum_u \sigma_u,$$

for $\sigma = (\sigma_u : u \in \Lambda_n) \in \Sigma_n$. The first (resp., second) summation is over all nearestneighbour pairs $u, v \in \Lambda_n$ (resp., all $u \in \Lambda_n$), and the constant Z is chosen appropriately.

- (i) Under what conditions on β , h does ϕ_n satisfy the FKG inequality.
- (ii) Write $\partial \Lambda_n = \Lambda_n \setminus \Lambda_{n-1}$ for the boundary of the box, and let

$$B_n = \{ \sigma_v = 1 \text{ for all } v \in \partial \Lambda_n \}.$$

Let $\beta \ge 0$, and let A be an increasing event in the infinite sample space $\Sigma = \{-1,1\}^{\mathbb{Z}^d}$ that is defined in terms of the states of only finitely many vertices. Show that, for all large $n, \phi_n(A \mid B_n)$ is decreasing in n, and deduce that the limit $\phi^1(A) = \lim_{n \to \infty} \phi_n(A \mid B_n)$ exists.

(iii) Explain briefly why ϕ^1 may be extended to a probability measure on Σ .

$\mathbf{4}$

Write an essay on Cardy's formula. Your essay should include a clear statement of the main theorem. You should include outlines of the main steps of the proof, but need not give full details of their justification.

END OF PAPER