MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2011 9:00 am to 12:00 pm

PAPER 26

MODULAR FORMS

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let Λ be a lattice in \mathbb{C} . Define the Weierstraß \wp -function associated to Λ , and show that it is an elliptic function with respect to Λ . [You may assume without proof the convergence of the series $\sum' |\omega|^{-\sigma}$ for $\sigma > 2$.]

Compute the Laurent series of $\wp(z)$ at the origin in terms of the constants

$$G_k(\Lambda) = \sum_{0 \neq \omega \in \Lambda} \frac{1}{\omega^k}$$

and deduce that $\wp(z)$ satisfies the differential equation

$$\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$$

where $g_2 = 60G_4(\Lambda), g_3 = 140G_6(\Lambda).$

Suppose that $G_6(\Lambda) = 0$. Show that for some $\omega \in \Lambda \setminus 2\Lambda$,

$$\frac{1}{\wp(z)} = \frac{2\wp(z-\omega/2)}{\wp''(\omega/2)}.$$

Give an example of a lattice Λ for which $G_6(\Lambda) = 0$, and find the corresponding ω .

$\mathbf{2}$

Assuming the dimension formula for the space $M_k(\Gamma(1))$, show that every modular form of level one with integral Fourier coefficients may be expressed as a polynomial, with integer coefficients, in E_4 , E_6 and $\Delta = 12^{-3}(E_4^3 - E_6^2)$.

Deduce that there is a unique basis $\{g_0, \ldots, g_{d-1}\}$ for $M_k(\Gamma(1))$ whose Fourier coefficients satisfy

$$a_n(g_j) = \begin{cases} 1 & \text{if } j = n \\ 0 & \text{if } j \neq n \text{ and } n < d \end{cases}$$

where $d = \dim M_k(\Gamma(1))$. Show that $a_n(g_j) \in \mathbb{Z}$ for all j, n.

Let T_n be the *n*-th Hecke operator acting on $S_k(\Gamma(1))$. Show that for every $n \ge 1$,

$$T_n = \sum_{j=1}^{d-1} a_n(g_j) T_j.$$

[*Hint: The q-expansions of* E_4 and E_6 are $1+240 \sum \sigma_3(n)q^n$ and $1-504 \sum \sigma_5(n)q^n$.]

Part III, Paper 26

CAMBRIDGE

3

(i) Let $f = \sum_{n \ge 1} a_n q^n \in S_k(\Gamma_0(N))$. Show that $f(z) = O(y^{-k/2})$ on \mathfrak{H} , and that the Mellin transform formula

$$(2\pi)^{-s}\Gamma(s)\sum_{n\ge 1}a_n n^{-s} = \int_0^\infty f(iy)y^{s-1}\,dy$$

holds whenever $\operatorname{Re}(s) > k/2$. Deduce that

$$\Lambda(f,s) = N^{s/2} (2\pi)^{-s} \Gamma(s) \sum_{n \ge 1} a_n n^{-s}$$

has an analytic continuation to all of $\mathbb C$ satisfying the functional equation

$$\Lambda(f, k-s) = (-1)^{k/2} \Lambda(f|_k W_N, s).$$

(ii) Let $f \in S_k(\Gamma(1))$, and let $\zeta = e^{2\pi i p/N}$ be a primitive N-th root of unity. By considering g(z) = f(z + p/N) show that the function

$$\Lambda(f,\zeta,s) = N^s (2\pi)^{-s} \Gamma(s) \sum_{n \ge 1} \zeta^n a_n n^{-s}$$

satisfies the functional equation

$$\Lambda(f,\zeta,s) = (-1)^{k/2} \Lambda(f,\zeta',k-s)$$

with $\zeta' = e^{2\pi i q/N}$, $pq \equiv -1 \pmod{N}$.

 $\mathbf{4}$

Let $\Gamma \subset SL_2(\mathbb{Z})$ be a subgroup of finite index containing -1.

(i) Obtain the formula

$$g = 1 + \frac{n}{12} - \frac{\nu_{\infty}}{2} - \frac{\nu_2}{4} - \frac{\nu_3}{3}$$

for the genus of the Riemann surface $\widehat{\Gamma \setminus \mathfrak{H}}$, where ν_{∞} is the number of cusps of Γ , and ν_r (r = 1, 2) is the number of Γ -equivalence classes in \mathfrak{H} of points whose stabiliser in $\overline{\Gamma}$ has order r.

(ii) Show that if $\Gamma = \Gamma(N)$ for N > 1 then $\nu_2 = \nu_3 = 0$. Deduce that $g(\widehat{\Gamma(N) \setminus \mathfrak{H}}) = 0$ if $N \leq 5$.

(iii) Explain what is meant by a fundamental domain for Γ . Write down a fundamental domain for $\Gamma(2)$. By considering subgroups of index 2 in $\Gamma(2)$, or otherwise, show that there exists a pair (Γ_1, Γ_2) of distinct subgroups of $\Gamma(1)$ (each containing -1) having a common fundamental domain.

Part III, Paper 26

[TURN OVER

CAMBRIDGE

 $\mathbf{5}$

Write an essay on EITHER

- (i) the theory of Hecke operators for modular forms of level one; OR
- (ii) Atkin-Lehner theory for $\Gamma_0(N)$.

END OF PAPER