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1

Let Λ be a lattice in C. Define the Weierstraß ℘-function associated to Λ, and
show that it is an elliptic function with respect to Λ. [You may assume without proof the

convergence of the series
∑′ |ω|−σ for σ > 2.]

Compute the Laurent series of ℘(z) at the origin in terms of the constants

Gk(Λ) =
∑

06=ω∈Λ

1

ωk

and deduce that ℘(z) satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z) − g3

where g2 = 60G4(Λ), g3 = 140G6(Λ).

Suppose that G6(Λ) = 0. Show that for some ω ∈ Λ \ 2Λ,

1

℘(z)
=

2℘(z − ω/2)

℘′′(ω/2)
.

Give an example of a lattice Λ for which G6(Λ) = 0, and find the corresponding ω.

2

Assuming the dimension formula for the space Mk(Γ(1)), show that every modular
form of level one with integral Fourier coefficients may be expressed as a polynomial, with
integer coefficients, in E4, E6 and ∆ = 12−3(E3

4
− E2

6
).

Deduce that there is a unique basis {g0, . . . , gd−1} for Mk(Γ(1)) whose Fourier
coefficients satisfy

an(gj) =

{
1 if j = n

0 if j 6= n and n < d

where d = dimMk(Γ(1)). Show that an(gj) ∈ Z for all j, n.

Let Tn be the n-th Hecke operator acting on Sk(Γ(1)). Show that for every n > 1,

Tn =

d−1∑

j=1

an(gj)Tj .

[Hint: The q-expansions of E4 and E6 are 1+240
∑

σ3(n)q
n and 1−504

∑
σ5(n)q

n.]
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(i) Let f =
∑

n>1
anq

n ∈ Sk(Γ0(N)). Show that f(z) = O(y−k/2) on H, and that
the Mellin transform formula

(2π)−sΓ(s)
∑

n>1

ann
−s =

∫ ∞

0

f(iy)ys−1 dy

holds whenever Re(s) > k/2. Deduce that

Λ(f, s) = N s/2(2π)−sΓ(s)
∑

n>1

ann
−s

has an analytic continuation to all of C satisfying the functional equation

Λ(f, k − s) = (−1)k/2Λ(f |kWN , s).

(ii) Let f ∈ Sk(Γ(1)), and let ζ = e2πip/N be a primitive N -th root of unity. By considering
g(z) = f(z + p/N) show that the function

Λ(f, ζ, s) = N s(2π)−sΓ(s)
∑

n>1

ζnann
−s

satisfies the functional equation

Λ(f, ζ, s) = (−1)k/2Λ(f, ζ ′, k − s)

with ζ ′ = e2πiq/N , pq ≡ −1 (mod N).

4

Let Γ ⊂ SL2(Z) be a subgroup of finite index containing −1.

(i) Obtain the formula

g = 1 +
n

12
−

ν∞
2

−
ν2
4

−
ν3
3

for the genus of the Riemann surface Γ̂\H, where ν∞ is the number of cusps of Γ, and νr
(r = 1, 2) is the number of Γ-equivalence classes in H of points whose stabiliser in Γ has
order r.

(ii) Show that if Γ = Γ(N) for N > 1 then ν2 = ν3 = 0. Deduce that g( ̂Γ(N)\H) = 0
if N 6 5.

(iii) Explain what is meant by a fundamental domain for Γ. Write down a
fundamental domain for Γ(2). By considering subgroups of index 2 in Γ(2), or otherwise,
show that there exists a pair (Γ1,Γ2) of distinct subgroups of Γ(1) (each containing −1)
having a common fundamental domain.
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Write an essay on EITHER

(i) the theory of Hecke operators for modular forms of level one; OR

(ii) Atkin-Lehner theory for Γ0(N).

END OF PAPER
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