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ζn denotes a primitive n-th root of unity.

1

(i) State and prove the Chinese Remainder Theorem for ideals in the ring of integers
of a number field.

(ii) Let K be a number field. Explain what is meant by the norm N(a) of a non-zero
ideal a of OK . Prove that it is finite and satisfies

|NK/Q(α)| = N((α)), N(ab) = N(a)N(b) and N(aOL) = N(a)[L:K],

for α ∈ OK , b a non-zero ideal of OK and L/K a field extension of finite degree.

(iii) Define the terms residue degree and ramification degree and prove the formula

m
∑

i=1

eifi = [L : K],

when a prime p of K splits into primes q1 . . . qm of L with residue and ramification degrees
f1, . . . fm and e1, . . . em, respectively. For K = Q and L = Q(

√
−5), give an example of a

prime for which e = f = 1 and an example for which e = 2, f = 1.

2

Let F = Q(ζ5,
5
√
75), a field of degree 20 over Q. Determine the decomposition and

inertia groups in Gal(F/Q) for primes in F above 3, 5, 11 and 89. Find the number of
primes above 3, 5, 11 and 89 in the subfield Q( 5

√
75), together with their ramification and

residue degrees over Q.

(You do not need to describe the primes explicitly, nor to give explicit generators
for the decomposition and inertia groups.)
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(i) Define the Artin L-function L(ρ, s) for a representation of the Galois group of
an extension of number fields. Using the fact that Artin L-functions of 1-dimensional
representations have an analytic continuation to C except for a simple pole at s = 1 in the
case of the trivial representation, prove that L(ρ, s) has an analytic continuation to s = 1
whenever ρ is a non-trivial irreducible representation.

(Basic properties of Artin L-functions, as well as Artin’s or Brauer’s Induction
Theorem, may be used without proof, provided that they are clearly stated.)

(ii) Let F = Q(ζp) for some prime number p, and let ρ be a non-trivial 1-dimensional
representation of Gal(F/Q). Show that the Artin L-function of ρ coincides with the
Dirichlet L-function of a suitable Dirichlet character.

(iii) Let L/K be a Galois extension of number fields whose Galois group is cyclic of
order 3. By considering the Dedekind ζ-functions of L and K, prove that infinitely many
primes of K do not split in L.

(You may assume that only finitely many primes ramify in L/K.)

4

(i) State the Main Theorem of Class Field Theory, and use it to prove the Kronecker–
Weber theorem.

(ii) Let m = (5 + 3ζ3) be a modulus of K = Q(ζ3). Show that the Galois group
Gal(F/K) of its ray class field F is cyclic of order 3. Deduce that F is of the form

F = K

(

3

√

ζk3 · (5 + 3ζ3)

)

.

By considering the Frobenius element at (4 + 3ζ3), or otherwise, determine F .

(You may assume that the ideal class group of Q(ζ3) is trivial, and that its group of
units is generated by ζ6.)
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