

MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2011 1:30 pm to 4:30 pm

PAPER 25

ALGEBRAIC NUMBER THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. ζ_n denotes a primitive *n*-th root of unity.

1

(i) State and prove the Chinese Remainder Theorem for ideals in the ring of integers of a number field.

(ii) Let K be a number field. Explain what is meant by the norm $N(\mathfrak{a})$ of a non-zero ideal \mathfrak{a} of \mathcal{O}_K . Prove that it is finite and satisfies

 $|N_{K/\mathbb{Q}}(\alpha)| = N((\alpha)), \qquad N(\mathfrak{ab}) = N(\mathfrak{a})N(\mathfrak{b}) \qquad \text{and} \qquad N(\mathfrak{a}\mathcal{O}_L) = N(\mathfrak{a})^{[L:K]},$

for $\alpha \in \mathcal{O}_K$, \mathfrak{b} a non-zero ideal of \mathcal{O}_K and L/K a field extension of finite degree.

(iii) Define the terms residue degree and ramification degree and prove the formula

$$\sum_{i=1}^{m} e_i f_i = [L:K],$$

when a prime \mathfrak{p} of K splits into primes $\mathfrak{q}_1 \ldots \mathfrak{q}_m$ of L with residue and ramification degrees $f_1, \ldots f_m$ and $e_1, \ldots e_m$, respectively. For $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{-5})$, give an example of a prime for which e = f = 1 and an example for which e = 2, f = 1.

$\mathbf{2}$

Let $F = \mathbb{Q}(\zeta_5, \sqrt[5]{75})$, a field of degree 20 over \mathbb{Q} . Determine the decomposition and inertia groups in $\operatorname{Gal}(F/\mathbb{Q})$ for primes in F above 3, 5, 11 and 89. Find the number of primes above 3, 5, 11 and 89 in the subfield $\mathbb{Q}(\sqrt[5]{75})$, together with their ramification and residue degrees over \mathbb{Q} .

(You do not need to describe the primes explicitly, nor to give explicit generators for the decomposition and inertia groups.)

CAMBRIDGE

3

(i) Define the Artin *L*-function $L(\rho, s)$ for a representation of the Galois group of an extension of number fields. Using the fact that Artin *L*-functions of 1-dimensional representations have an analytic continuation to \mathbb{C} except for a simple pole at s = 1 in the case of the trivial representation, prove that $L(\rho, s)$ has an analytic continuation to s = 1whenever ρ is a non-trivial irreducible representation.

(Basic properties of Artin L-functions, as well as Artin's or Brauer's Induction Theorem, may be used without proof, provided that they are clearly stated.)

(ii) Let $F = \mathbb{Q}(\zeta_p)$ for some prime number p, and let ρ be a non-trivial 1-dimensional representation of $\operatorname{Gal}(F/\mathbb{Q})$. Show that the Artin *L*-function of ρ coincides with the Dirichlet *L*-function of a suitable Dirichlet character.

(iii) Let L/K be a Galois extension of number fields whose Galois group is cyclic of order 3. By considering the Dedekind ζ -functions of L and K, prove that infinitely many primes of K do not split in L.

(You may assume that only finitely many primes ramify in L/K.)

 $\mathbf{4}$

(i) State the Main Theorem of Class Field Theory, and use it to prove the Kronecker–Weber theorem.

(ii) Let $\mathfrak{m} = (5 + 3\zeta_3)$ be a modulus of $K = \mathbb{Q}(\zeta_3)$. Show that the Galois group $\operatorname{Gal}(F/K)$ of its ray class field F is cyclic of order 3. Deduce that F is of the form

$$F = K\left(\sqrt[3]{\zeta_3^k \cdot (5+3\zeta_3)}\right).$$

By considering the Frobenius element at $(4 + 3\zeta_3)$, or otherwise, determine F.

(You may assume that the ideal class group of $\mathbb{Q}(\zeta_3)$ is trivial, and that its group of units is generated by $\zeta_{6.}$)

END OF PAPER