MATHEMATICAL TRIPOS Part III

Tuesday, 7 June, 2011 $\,$ 9:00 am to 11:00 am $\,$

PAPER 24

LOCAL FIELDS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a) Let k be a finite field. Define the field of Laurent power series K = k((t)). Show that there is a non-archimedean absolute value $|\cdot|$ on K such that

(i) R = k[[t]] is the completion of k[t],

(ii) K = k((t)) is the completion of k(t),

(iii) $\#(R/fR) = |f|^{-1}$ for all $0 \neq f \in R$.

(b) Let K be a field complete with respect to a discrete valuation. Show that K is locally compact if and only if it has finite residue field.

$\mathbf{2}$

Let K be a finite Galois extension of \mathbb{Q}_p of degree n.

(a) Show that if non-trivial absolute values $|\cdot|_1$ and $|\cdot|_2$ on K induce the same topology then there exists c > 0 such that $|x|_1 = |x|_2^c$ for all $x \in K$.

(b) Show that if $|\cdot|$ is an absolute value on K extending the p-adic absolute value $|\cdot|_p$ on \mathbb{Q}_p then

$$|x| = |N_{K/\mathbb{Q}_p}(x)|_p^{1/n}$$

for all $x \in K$. [You should prove any results you need about equivalence of norms on vector spaces.]

3

(a) State and prove a version of Hensel's Lemma.

(b) Determine the number of solutions of $x^3 - 11x + 40 = 0$ in \mathbb{Z}_p for p = 2, 3, 5.

(c) Let $L \supset K$ be finite extensions of \mathbb{Q}_p . Show that if L/K is unramified then L/K is Galois.

$\mathbf{4}$

Let K be a finite extension of \mathbb{Q}_p with valuation ring \mathcal{O}_K and residue field k of order q. Assuming any properties you need of the Teichmüller map, prove that (a) \mathcal{O}_K^* contains a subgroup of finite index isomorphic to $(\mathcal{O}_K, +)$. (b) If $e(K/\mathbb{Q}_p) < p-1$ then K contains exactly q-1 roots of unity. (c) $\mathbb{Q}_p^*/(\mathbb{Q}_p^*)^3 \cong \mathbb{Z}/3\mathbb{Z}$ or $(\mathbb{Z}/3\mathbb{Z})^2$.

CAMBRIDGE

 $\mathbf{5}$

(a) Show that if $m \in \mathbb{Z}$ with $m \equiv 2 \pmod{9}$ then $\mathbb{Q}_3(\zeta_3, \sqrt[3]{m})/\mathbb{Q}_3$ is a totally ramified extension of degree 6.

(b) Write an essay on higher ramification groups and illustrate by computing them for the example in part (a).

END OF PAPER