

MATHEMATICAL TRIPOS Part III

Thursday, 9 June, 2011 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 21

TOPOS THEORY

Attempt no more than **THREE** questions. There are **SEVEN** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (i) Let G be a group. Prove that the category $\mathbf{B}G = [G^{\mathrm{op}}, \mathbf{Set}]$ of right G-actions and equivariant maps between them is an elementary topos, by explicitly constructing its finite limits, exponentials and subobject classifier.
- (ii) Let G be a topological group and **B**G the category of continuous G-sets (i.e. the category having as objects the right G-actions $X \times G \to X$ which are continuous when X is endowed with the discrete topology and $X \times G$ is endowed with the product topology, and as arrows the equivariant maps between them). Show that **B**G is an elementary topos, by constructing a right adjoint $Z_G : \mathbf{B}G^d \to \mathbf{B}G$ to the inclusion functor $\mathbf{B}G \to \mathbf{B}G^d$, where G^d is the group G endowed with the discrete topology [*Hint:* Define Z_G on the objects by sending an object $(X, r : X \times G^d \to X)$ of $\mathbf{B}G^d$ to the restricted action $(X_r, r| : X_r \times G \to X_r)$ where $X_r = \{x \in X \mid \{g \in G^d \mid r(x,g) = x\}$ is open in $G\}$].

$\mathbf{2}$

Explain what is meant by *local operator* on a topos, and sketch the proof that the following three concepts are equivalent for any topos \mathcal{E} :

- (i) local operators on \mathcal{E} ;
- (ii) universal (i.e. pullback-stable) closure operations on subobjects in \mathcal{E} ;
- (iii) full reflective subcategories of \mathcal{E} with cartesian (i.e. finite-limit-preserving) reflector.

3

Show that for any site (\mathcal{C}, J) and any Grothendieck topos \mathcal{E} , there is an equivalence between the category of geometric morphisms $\mathcal{E} \to \mathbf{Sh}(\mathcal{C}, J)$ and the category of Jcontinuous flat functors $\mathcal{C} \to \mathcal{E}$. Show further that the geometric morphism corresponding to a flat J-continuous functor $F : \mathcal{C} \to \mathcal{E}$ is surjective if and only if F is cover-reflecting, in the sense that, for any sieve S in \mathcal{C} on an object c of \mathcal{C} , F sends S to an epimorphic family if and only if S is J-covering [You may use the surjection-inclusion factorization of a geometric morphism, if you want].

CAMBRIDGE

 $\mathbf{4}$

Let σ be the sequent

$$(\top \vdash_{x,y} (x \!\Rightarrow\! y) \lor (y \!\Rightarrow\! x)).$$

written in the theory of Heyting algebras.

(i) Show that if σ is valid in the internal Heyting algebra of a topos \mathcal{E} given by its subobject classifier $\Omega_{\mathcal{E}}$ then \mathcal{E} satisfies De Morgan's law, i.e. the sequent

$$(\top \vdash_x \neg x \lor \neg \neg x).$$

is valid in $\Omega_{\mathcal{E}}$.

- (ii) Show that σ is valid in the internal Heyting algebra $\Omega_{\mathbf{Sh}(L)}$ of a topos $\mathbf{Sh}(L)$ of sheaves on a locale L given by its subobject classifier if and only if σ is valid in L, regarded as a model of the theory of Heyting algebras in **Set**, equivalently if for any elements $a, b \in L$, $1_L = (a \Rightarrow b) \lor (b \Rightarrow a)$ in L (where 1_L is the top element of L and \Rightarrow denotes the Heyting implication in L).
- (iii) Give necessary and sufficient conditions on a small category \mathcal{C} for the sequent σ to be valid in the algebra $\Omega_{[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]}$ of the presheaf topos $[\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]$.

$\mathbf{5}$

Let \mathbb{T} be a geometric theory over a signature Σ .

(i) Show that, for any small category \mathcal{C} , we have an equivalence of categories

 $\mathbb{T}\text{-}\mathrm{mod}([\mathcal{C},\mathbf{Set}]) \simeq [\mathcal{C},\mathbb{T}\text{-}\mathrm{mod}(\mathbf{Set})].$

- (ii) Show that, for any topological space X, a Σ -structure M in $\mathbf{Sh}(X)$ is a \mathbb{T} -model if and only if each $x^*(M)$, $x \in X$, is a \mathbb{T} -model in \mathbf{Set} , where $x^* : \mathbf{Sh}(X) \to \mathbf{Set}$ is the stalk functor associated with x (i.e. the inverse image functor of the geometric morphism $\mathbf{Set} \to \mathbf{Sh}(X)$ corresponding to the point x of X).
- (iii) Show that if \mathbb{T} is a Horn theory over Σ then for any topological space X, a Σ -structure M in $\mathbf{Sh}(X)$ is a \mathbb{T} -model if and only if for every open set U of X, M(U) is a \mathbb{T} -model in **Set**; is this true also for an arbitrary coherent theory \mathbb{T} ?

UNIVERSITY OF

6

Define the notions of geometric theory and classifying topos, and sketch the proof that every geometric theory has a classifying topos.

- (i) Can a geometric theory have two inequivalent classifying toposes?
- (ii) Can two distinct geometric theories have equivalent classifying toposes?

 $\mathbf{7}$

Write an essay on the sense in which Grothendieck toposes can serve as 'bridges' for unifying Mathematics. [Detailed proofs are not required, but you should illustrate your arguments with appropriate examples.]

END OF PAPER