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SECTION I

1

Define the notion of monad , and explain how every adjunction gives rise to a monad.
Define the Kleisli category associated with a given monad T; prove that it is a category,
and that it comes equipped with an adjunction inducing T. Sketch the proof that the
Kleisli category is initial in the category of adjunctions inducing T.

2

Peter Freyd once suggested that the purpose of category theory is ‘to show that
which is trivial is trivially trivial’. Write an essay arguing either for or against this
assertion; it is suggested that such an essay should include some reference to the Yoneda
Lemma and/or the Adjoint Functor Theorems.
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SECTION II

3

Define a balanced category. If F : C → D is a faithful functor and C is balanced,
show that F reflects isomorphisms.

Let (F : C → D ⊣ G : D → C) be an adjunction with unit η and counit ǫ. Show
that F is faithful if and only if η is a (pointwise) monomorphism. If both η and ǫ are
monomorphisms and C is balanced, show that F is full and faithful. Give an example to
show that the hypothesis on C cannot be omitted.

4

Let C be a category, and let D be a full subcategory of the category [C, C] of
endofunctors of C which is closed under composition and contains the identity functor.
Suppose D has a terminal object T ; show that T carries a unique monad structure T,
and that if S is any other monad whose functor part lies in D, there is a forgetful functor
CT → CS.

Now let C = Set and let D be the category of functors Set → Set which preserve
finite coproducts. Show that D has a terminal object, namely the functor β which assigns
to a set A the set of all ultrafilters on A (that is, maximal proper filters in the lattice PA

of all subsets of A).

5

Let C be a small category and F : C → Set a functor. Show that F may be
represented as the colimit in [C,Set] of a diagram of shape (1 ↓ F )op whose vertices are
representable functors. [Here 1 denotes a singleton set {∗}.]

Now suppose C has finite limits. Show that the following conditions are equivalent:

(i) F preserves finite limits.

(ii) For any set A, the category (A ↓ F ) has finite limits.

(iii) (1 ↓ F )op is filtered.

(iv) F is expressible as a (small) filtered colimit of representable functors.

[You may assume the result that filtered colimits commute with finite limits in Set.]

Part III, Paper 20 [TURN OVER



4

6

Define the notions of semi-additive and additive category, and show that finite
products and coproducts coincide in a semi-additive category.

Recall that, in any category, a parallel pair f, g : A ⇉ B is said to be reflexive if
there exists r : B → A such that fr = gr = 1B . Show that any reflexive pair (f, g) in an
additive category C has the structure of an internal groupoid : that is, for each object C,
the set C (C,B) is the set of objects of a groupoid whose morphisms are the members of
C (C,A), with ‘domain’ and ‘codomain’ given by composition with f and g respectively.

By considering a suitable parallel pair in the category of commutative monoids, or
otherwise, show that this result does not hold in all semi-additive categories.

END OF PAPER
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