

MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2011 9:00 am to 12:00 pm

PAPER 20

CATEGORY THEORY

Attempt **ONE** question from Section I, and **TWO** from Section II. There are **SIX** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

SECTION I

1

Define the notion of *monad*, and explain how every adjunction gives rise to a monad. Define the *Kleisli category* associated with a given monad \mathbb{T} ; prove that it is a category, and that it comes equipped with an adjunction inducing \mathbb{T} . Sketch the proof that the Kleisli category is initial in the category of adjunctions inducing \mathbb{T} .

 $\mathbf{2}$

Peter Freyd once suggested that the purpose of category theory is 'to show that which is trivial is trivially trivial'. Write an essay arguing *either* for *or* against this assertion; it is suggested that such an essay should include some reference to the Yoneda Lemma and/or the Adjoint Functor Theorems.

SECTION II

3

Define a *balanced* category. If $F : \mathcal{C} \to \mathcal{D}$ is a faithful functor and \mathcal{C} is balanced, show that F reflects isomorphisms.

Let $(F : \mathcal{C} \to \mathcal{D} \dashv G : \mathcal{D} \to \mathcal{C})$ be an adjunction with unit η and counit ϵ . Show that F is faithful if and only if η is a (pointwise) monomorphism. If both η and ϵ are monomorphisms and \mathcal{C} is balanced, show that F is full and faithful. Give an example to show that the hypothesis on \mathcal{C} cannot be omitted.

$\mathbf{4}$

Let \mathcal{C} be a category, and let \mathcal{D} be a full subcategory of the category $[\mathcal{C}, \mathcal{C}]$ of endofunctors of \mathcal{C} which is closed under composition and contains the identity functor. Suppose \mathcal{D} has a terminal object T; show that T carries a unique monad structure \mathbb{T} , and that if \mathbb{S} is any other monad whose functor part lies in \mathcal{D} , there is a forgetful functor $\mathcal{C}^{\mathbb{T}} \to \mathcal{C}^{\mathbb{S}}$.

Now let $C = \mathbf{Set}$ and let \mathcal{D} be the category of functors $\mathbf{Set} \to \mathbf{Set}$ which preserve finite coproducts. Show that \mathcal{D} has a terminal object, namely the functor β which assigns to a set A the set of all ultrafilters on A (that is, maximal proper filters in the lattice PA of all subsets of A).

5

Let \mathcal{C} be a small category and $F : \mathcal{C} \to \mathbf{Set}$ a functor. Show that F may be represented as the colimit in $[\mathcal{C}, \mathbf{Set}]$ of a diagram of shape $(1 \downarrow F)^{\mathrm{op}}$ whose vertices are representable functors. [Here 1 denotes a singleton set $\{*\}$.]

Now suppose C has finite limits. Show that the following conditions are equivalent:

- (i) F preserves finite limits.
- (ii) For any set A, the category $(A \downarrow F)$ has finite limits.
- (iii) $(1 \downarrow F)^{\text{op}}$ is filtered.
- (iv) F is expressible as a (small) filtered colimit of representable functors.

[You may assume the result that filtered colimits commute with finite limits in **Set**.]

UNIVERSITY OF

6

Define the notions of semi-additive and additive category, and show that finite products and coproducts coincide in a semi-additive category.

Recall that, in any category, a parallel pair $f, g: A \rightrightarrows B$ is said to be *reflexive* if there exists $r: B \to A$ such that $fr = gr = 1_B$. Show that any reflexive pair (f, g) in an additive category C has the structure of an *internal groupoid*: that is, for each object C, the set C(C, B) is the set of objects of a groupoid whose morphisms are the members of C(C, A), with 'domain' and 'codomain' given by composition with f and g respectively.

By considering a suitable parallel pair in the category of commutative monoids, or otherwise, show that this result does not hold in all semi-additive categories.

END OF PAPER