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1

Let G and H be finitely presented groups. Prove or give a counter example to each
of the following, stating clearly any theorems you use.

(i) If G and H have soluble word problem, then so does G ∗H.

(ii) The free group on 5 generators can be embedded in the free group on 2 generators.

(iii) If G has soluble word problem, then so does any finitely generated homomorphic
image.

(iv) If f, g,∈ G have order 4, then they are conjugate in some HNN-extension of G.

(v) Every countable group can be embedded in a finitely presented group.

(vi) If G has soluble word problem, then so does any HNN-extension of G.

2

State the Messuage Lemma and use it to prove that there is no algorithm to
determine whether or not an arbitrary finitely presented group is non-abelian. You may
assume the existence of a non-abelian finitely presented group with insoluble word problem.

3

Let G = 〈x, y : [x, y±1, x] = [x−1, y±1, x] = [x, y±1, y] = [x−1, y±1, y] = 1〉. Describe
G/γ2(G) and γ2(G)/γ3(G), and prove that G is nilpotent class 2. Illustrate how to solve
the word problem for G, giving examples.

You may assume that [b, a] = [a, b]−1, [ab, c] = [a, c]b[b, c], and [a, bc] = [a, c][a, b]c.

4

(i) Let A and B be isomorphic subgroups of a finite group G. Prove that A and B
are conjugate in some finite group H containing G.

(ii) Let g, x1, . . . , xn ∈ G and N be the normal subgroup of G generated by g. If
N∩〈x1, . . . , xn〉 = {1} and 〈x1, . . . , xn〉 is free of rank n, prove that 〈x

−1

1
g, x−1

2
g2, . . . , x−1

n gn〉
is isomorphic to 〈g−1x1, . . . , g

−1xn〉.
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5

Give an outline of the main ideas involved in any construction (and proof) of a
finitely presented group with insoluble word problem.

6

(i) Let G = 〈a, b, c : a2 = 1, c−1bc = b−1〉. Construct a finitely presented group H
containing G such that b belongs to the normal subgroup of H generated by a, proving
your result.

(ii) Let w := xyzy−4x−1zy2x3y, and G = 〈x, y, z : w = 1〉. By using a different
set of generators of G, express G as an HNN-extension of a one-relator group K, where
the defining word for K has length (in the new generators) less than the length of w (in
x, y, z), quoting any theorems you use.
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