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1

Let K be a perfect field (so that all finite extensions of K are separable) and let A
be a central simple algebra over K. Give the definition of the index indKA of A.

Show that indKA is the gcd of the degrees [L : K] of the finite field extensions L/K
that split A. (You may assume the double-centralizer theorem, as well as the formula
[B : K] = [A : CA(B)] as long as these are clearly stated.) This gives an alternate
definition of the index. How would you define the index of a Severi-Brauer variety X over
K?

Recall that the period of A, denoted perK(A), is the order of its class [A] ∈ Br(K).
Using a Corestriction-Restriction argument, show that perK(A) divides indKA. Show
that perK(A) and indKA have the same prime factors, i.e. if p is a prime, then p divides
perK(A) if and only if p divides indKA. [Hint : you may show that if p does not divide

perK(A), then A is split by a finite extension L/K of degree prime to p.]

2

Let K be a field and let A be a central simple algebra over K.

1. Give the definition of the reduced norm Nrd : A → K and show that it doesn’t
depend on choices.

2. Define the Cr-property for fields and give examples of C1-fields [no proofs are

required ].

3. Prove that if K is C1, then Br(K) = 0.

4. If K is the function field of a curve over a finite field, show that A is split by a
cyclic extension of K.

5. Let K be a C2-field and let D be a central division algebra over K. Show that
Nrd : A → K is surjective.

3

1. Give the definition of the p-cohomological dimension of a field. If K is a field of
characteristic p > 0, show that cdp(K) 6 1. Any result about cohomological dimension
that you may use must be proven.

2. Let L/K be a purely inseparable extension of K (this means that for all α ∈ L,
there is an integer n such that αpn ∈ K). Show that the restriction map Br(K) → Br(L)
is surjective. Show that its kernel is p-primary torsion.
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Let K be a field. Fix a separable closure K̄. Let X be a variety over K such that
X̄ := X ×Spec K Spec K̄ is a smooth projective variety over K̄.

Explain briefly why there is an exact sequence

0 → K̄× → K̄(X)× → DivX̄ → PicX̄ → 0.

Use this exact sequence to establish the exact sequence

0 −→ PicX
i

−→ (PicX̄)Gal(K̄/K) δ
−→ BrK

Res
−→ Br(K(X)),

where i is the natural map and Res is the restriction map.

Now, suppose that X is a Severi-Brauer variety over K. Describe explicitly the map
δ [no proof is required ].

If C is a conic over K with C(K) = ∅, show that Ker(Br(K) → Br(K(C))) = Z/2Z.

END OF PAPER

Part III, Paper 19


