MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2011 1:30 pm to 4:30 pm

PAPER 17

ALGEBRAIC GEOMETRY

Attempt no more than **FOUR** questions. There are **FIVE** questions in total. The questions carry equal weight.

Algebraic sets are defined over an algebraically closed field k, unless stated otherwise.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

Let $d \ge 1$ and $n \ge 2$. Let the algebraically closed base field k have characteristic zero. The set of nonzero homogeneous polynomials of degree d in n + 1 variables modulo scalars is a projective space \mathbf{P}^N . What is the number N? Show that the set of irreducible hypersurfaces of degree d in \mathbf{P}^n is an open subset of \mathbf{P}^N in the Zariski topology. Show that the set of smooth irreducible hypersurfaces of degree d in \mathbf{P}^n is a connected open subset of \mathbf{P}^N .

$\mathbf{2}$

Let Z be a closed subspace of a topological space X, and let $i : Z \to X$ be the inclusion. For any sheaf E of abelian groups on Z, show that the direct image sheaf i_*E satisfies $H^j(Z, E) \cong H^j(X, i_*E)$ for all $j \ge 0$. [Hint: use the definition of $H^*(Z, E)$. Note that sheaf cohomology is not computed by the Cech complex in this generality.]

Give an example to show that $H^j(Z, E)$ need not be isomorphic to $H^j(X, i_*E)$ for Z a subspace of X which is not closed.

3

(a) Let X be a smooth projective curve of genus $g \ge 1$. You may use that every line bundle L of positive degree d on X has $h^0(X, L) \le d$. Show that every line bundle L of degree $d \ge 3$ such that $h^0(X, L)$ is equal to d must be very ample (that is, L gives an embedding of X into some projective space).

(b) Let X be a smooth projective curve of genus $g \ge 2$ and degree 4 in some \mathbf{P}^N . Show that X is contained in some linear subspace $\mathbf{P}^2 \subset \mathbf{P}^N$. [*Hint: Show that otherwise* X could be embedded in \mathbf{P}^2 as a plane cubic curve. Part (a) may be helpful.] As a result, compute the genus of X.

(c) Let X be a smooth curve of degree 4 in \mathbf{P}^2 . Show that X cannot be embedded in any \mathbf{P}^N as a curve of degree 5. [*Hint: what could N be?*]

$\mathbf{4}$

Define the tensor product $E \otimes F$ of two coherent sheaves on an algebraic set X. Show that $(E \otimes F)(U) \cong E(U) \otimes_{O(U)} F(U)$ for every affine open subset $U \subset X$. [You may use general theorems on coherent sheaves.]

Give an example to show that $(E \otimes F)(U)$ need not be isomorphic to $E(U) \otimes_{O(U)} F(U)$ for an open subset U of X that is not affine.

CAMBRIDGE

 $\mathbf{5}$

Let X be a smooth surface of degree 4 in \mathbf{P}^3 . Suppose that X contains a smooth elliptic curve C. Show that the normal bundle of C in X is trivial. Show that the line bundle O(C) is basepoint-free on X. Show that there is a morphism $X \to \mathbf{P}^1$ whose fiber over some point in \mathbf{P}^1 is C.

END OF PAPER