
MATHEMATICAL TRIPOS Part III

Monday, 6 June, 2011 1:30 pm to 4:30 pm

PAPER 17

ALGEBRAIC GEOMETRY

Attempt no more than FOUR questions.

There are FIVE questions in total.
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Algebraic sets are defined over an algebraically closed field k, unless stated otherwise.
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1

Let d > 1 and n > 2. Let the algebraically closed base field k have characteristic
zero. The set of nonzero homogeneous polynomials of degree d in n+ 1 variables modulo
scalars is a projective space PN . What is the number N? Show that the set of irreducible
hypersurfaces of degree d in Pn is an open subset of PN in the Zariski topology. Show
that the set of smooth irreducible hypersurfaces of degree d in Pn is a connected open
subset of PN .

2

Let Z be a closed subspace of a topological space X, and let i : Z → X be the
inclusion. For any sheaf E of abelian groups on Z, show that the direct image sheaf i∗E
satisfies Hj(Z,E) ∼= Hj(X, i∗E) for all j > 0. [Hint: use the definition of H∗(Z,E). Note
that sheaf cohomology is not computed by the Cech complex in this generality.]

Give an example to show that Hj(Z,E) need not be isomorphic to Hj(X, i∗E) for
Z a subspace of X which is not closed.

3

(a) Let X be a smooth projective curve of genus g > 1. You may use that every
line bundle L of positive degree d on X has h0(X,L) 6 d. Show that every line bundle L
of degree d > 3 such that h0(X,L) is equal to d must be very ample (that is, L gives an
embedding of X into some projective space).

(b) Let X be a smooth projective curve of genus g > 2 and degree 4 in some PN .
Show that X is contained in some linear subspace P2

⊂ PN . [Hint: Show that otherwise
X could be embedded in P2 as a plane cubic curve. Part (a) may be helpful.] As a result,
compute the genus of X.

(c) Let X be a smooth curve of degree 4 in P2. Show that X cannot be embedded
in any PN as a curve of degree 5. [Hint: what could N be?]

4

Define the tensor product E ⊗ F of two coherent sheaves on an algebraic set X.
Show that (E⊗F )(U) ∼= E(U)⊗O(U) F (U) for every affine open subset U ⊂ X. [You may
use general theorems on coherent sheaves.]

Give an example to show that (E ⊗ F )(U) need not be isomorphic to E(U) ⊗O(U)

F (U) for an open subset U of X that is not affine.
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5

Let X be a smooth surface of degree 4 in P3. Suppose that X contains a smooth
elliptic curve C. Show that the normal bundle of C in X is trivial. Show that the line
bundle O(C) is basepoint-free on X. Show that there is a morphism X → P1 whose fiber
over some point in P1 is C.
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