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1

Let X be a complex manifold. Show that the Bott-Chern cohomology groups

Hp,q
BC(X) =

{α ∈ Ap,q(X)|dα = 0}

∂∂Ap−1,q−1(X)

are well defined, and that there are natural morphisms

Hp,q
BC(X) → Hp,q(X) and Hp,q

BC(X) → Hp+q(X,C).

State and prove the ∂∂-lemma. Show that if X is compact and Kähler, the map
Hp,q

BC(X) → Hp,q(X) is an isomorphism. Deduce from this that the bidegree decomposition
in the Hodge Decomposition Theorem is independent of the choice of Kähler structure.

2

Let X be a projective manifold and Z ⊂ X be a submanifold. Define and construct
the blowup of X along Z σ : X̃Z → X and prove that X̃Z is Kähler.

Assuming that the cohomology groups Hk(X,Z) are torsion free, show that the
degree k cohomology groups of X̃Z with coefficients in Z and C define an Integral Hodge
Structure of weight k (you may quote the Hodge Decomposition Theorem).

Describe the Hodge Structure on (Hk(X̃Z ,Z),H
k(X̃Z ,C)) in terms of the Hodge

structures on the cohomology of X and Z (you may quote without proof any auxiliary
result on pullbacks, push-forwards, cohomology of pairs and of fibre bundles).

Compute the Hodge numbers of the blowup of P3 along the curve Z = {x20 + x21 +
x22 + x23 = 0} ⊂ P

3.
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Show that the Grassmannian Gr(k,n) of k-planes in C
n is a complex manifold.

Define its tautological vector bundle S → Gr(k,n) and show that S is a holomorphic
vector bundle of rank k.

Let X be a complex manifold and E → X be a subbundle of rank k of X × C
n.

Show that there is a unique holomorphic map f : X → Gr(k,n) such that E = f∗S.

Let X → B be a proper holomorphic submersive map between connected complex
manifolds. Assume that B is contractible, and that X = π−1(0) is a compact Kähler
manifold. Define the Hodge bundle Hk, and prove that Hk is a trivial vector bundle of
rank bk(X) = dimHk(X,C) over B.

Assume that Xb = π−1(b) is a compact Kähler manifold for all b ∈ B. Define
the Hodge filtration {F pHk(Xb,C)}06p6k on the Betti cohomology Hk(Xb,C). Let
bp,k(b) = dimF pHk(Xb,C).

Define the period map P : B → Gr(bp,k,Hk(X,C)), and show there is a filtration
of Hk by holomorphic subbundles F pHk ⊂ Hk, whose fibres over b ∈ B are (F pHk)b =
F pHk(Xb,C). (You may quote any result from lectures on the behaviour of the functions
b 7→ bp,k(b) or on the period map.)
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Let z1, · · · , zn be coordinates on C
n, Λ = Zλ1 ⊕ · · · ⊕ Zλ2n a full lattice and X the

complex torus C
n/Λ. Define the transition matrices Ω̃ and Π̃ between the integral and

complex structures on X as follows. If

Ω =




λ1,1 · · · λ2n,1
...

...
λ1,n · · · λ2n,n




is the matrix whose column vectors are the coordinates of the vectors λi for 1 6 i 6 2n,

set Ω̃ =

(
Ω

Ω

)
and Π̃ =

(
Π Π

)
, with Ω̃Π̃ = Id.

Let H be a Hermitian metric with constant coefficients on C
n, and equip X with

the induced metric. Describe harmonic forms and the Betti cohomology groups of X in
terms of the holomorphic coordinates of Cn.

Let G = (gi,j)16i,j62n be a skew-symmetric and integral matrix, and suppose that
γ = Σgi,jdxi ∧ dxj is a real positive definite (1, 1)-form. Use Π to express γ in terms of
the coordinates zk and show that Ω satisfies the Riemann bilinear relations:

{
iΩG−1tΩ > 0
ΩG−1tΩ = 0

(G integral and skew-symmetric)

Show that after a suitable change of coordinates, the matrix of G is:

G =

(
0 D

−D 0

)
with D =




d1 0
. . .

0 dn


 , di ∈ Z.

Show that, if the first n vectors of Λ are identified with the standard basis of C
n,

Ω =
(
Id Z ′

)
, and setting Z = Z ′D, the Riemann relations become:

tZ = Z, ℑ(Z) > 0.

Give a criterion for a complex torus to be abelian in terms of Ω. Show that if n > 1
projective complex tori depend on n(n+1)

2 continuous parameters, so that there are many
non abelian tori.

Let C be a compact connected complex curve, show that C is projective. Define the
period map P associated to the weight 1 Hodge structure on (H1(C,Z),H1(C,C)). Define
g = b1(C)/2. Show that the polarised period domain of X is contained in the Siegel upper
half space hg.
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Let X be a compact Kähler manifold. Show that the map Hk(X,C) → Hk(X,OX )
induced by the inclusion C ⊂ OX and the projection mapHk(X,C) → Hk(X,OX ) induced
by the Hodge decomposition coincide.

Show that the image of the map PicX → H2(X,C) induced by the exponential
sequence is contained in

H1,1(X,Z) = im(H2(X,Z) → H2(X,C)) ∩H1,1(X).

Use the Hodge decomposition to give a proof of the Lefschetz decomposition on (1, 1)-
classes: prove that PicX → H1,1(X,Z) is surjective.

Show that a compact Kähler manifold X with h2,0(X) = 0 is projective. (You may
quote without proof Kodaira’s Embedding Theorem).

END OF PAPER
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