MATHEMATICAL TRIPOS Part III

Friday, 10 June, 2011 $\,$ 1:30 pm to 4:30 pm

PAPER 16

HODGE THEORY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

Let X be a complex manifold. Show that the *Bott-Chern cohomology* groups

$$H^{p,q}_{BC}(X) = \frac{\{\alpha \in \mathcal{A}^{p,q}(X) | d\alpha = 0\}}{\partial \overline{\partial} \mathcal{A}^{p-1,q-1}(X)}$$

are well defined, and that there are natural morphisms

$$H^{p,q}_{BC}(X) \to H^{p,q}(X) \text{ and } H^{p,q}_{BC}(X) \to H^{p+q}(X,\mathbb{C}).$$

State and prove the $\partial \overline{\partial}$ -lemma. Show that if X is compact and Kähler, the map $H^{p,q}_{BC}(X) \to H^{p,q}(X)$ is an isomorphism. Deduce from this that the bidegree decomposition in the Hodge Decomposition Theorem is independent of the choice of Kähler structure.

$\mathbf{2}$

Let X be a projective manifold and $Z \subset X$ be a submanifold. Define and construct the blowup of X along $Z \sigma : \widetilde{X}_Z \to X$ and prove that \widetilde{X}_Z is Kähler.

Assuming that the cohomology groups $H^k(X,\mathbb{Z})$ are torsion free, show that the degree k cohomology groups of \widetilde{X}_Z with coefficients in \mathbb{Z} and \mathbb{C} define an Integral Hodge Structure of weight k (you may quote the Hodge Decomposition Theorem).

Describe the Hodge Structure on $(H^k(\widetilde{X}_Z,\mathbb{Z}), H^k(\widetilde{X}_Z,\mathbb{C}))$ in terms of the Hodge structures on the cohomology of X and Z (you may quote without proof any auxiliary result on pullbacks, push-forwards, cohomology of pairs and of fibre bundles).

Compute the Hodge numbers of the blowup of \mathbb{P}^3 along the curve $Z = \{x_0^2 + x_1^2 + x_2^2 + x_3^2 = 0\} \subset \mathbb{P}^3$.

UNIVERSITY OF

3

Show that the Grassmannian Gr(k, n) of k-planes in \mathbb{C}^n is a complex manifold. Define its tautological vector bundle $S \to Gr(k, n)$ and show that S is a holomorphic vector bundle of rank k.

Let X be a complex manifold and $E \to X$ be a subbundle of rank k of $X \times \mathbb{C}^n$. Show that there is a unique holomorphic map $f: X \to \operatorname{Gr}(k, n)$ such that $E = f^* \mathcal{S}$.

Let $\mathcal{X} \to B$ be a proper holomorphic submersive map between connected complex manifolds. Assume that B is contractible, and that $X = \pi^{-1}(0)$ is a compact Kähler manifold. Define the Hodge bundle \mathcal{H}^k , and prove that \mathcal{H}^k is a trivial vector bundle of rank $b_k(X) = \dim H^k(X, \mathbb{C})$ over B.

Assume that $\mathcal{X}_b = \pi^{-1}(b)$ is a compact Kähler manifold for all $b \in B$. Define the Hodge filtration $\{F^p H^k(\mathcal{X}_b, \mathbb{C})\}_{0 \leq p \leq k}$ on the Betti cohomology $H^k(\mathcal{X}_b, \mathbb{C})$. Let $b^{p,k}(b) = \dim F^p H^k(\mathcal{X}_b, \mathbb{C})$.

Define the period map $\mathcal{P}: B \to \operatorname{Gr}(b^{p,k}, \operatorname{H}^{k}(X, \mathbb{C}))$, and show there is a filtration of \mathcal{H}^{k} by holomorphic subbundles $F^{p}\mathcal{H}^{k} \subset \mathcal{H}^{k}$, whose fibres over $b \in B$ are $(F^{p}\mathcal{H}^{k})_{b} =$ $F^{p}H^{k}(\mathcal{X}_{b}, \mathbb{C})$. (You may quote any result from lectures on the behaviour of the functions $b \mapsto b^{p,k}(b)$ or on the period map.)

UNIVERSITY OF

 $\mathbf{4}$

Let z_1, \dots, z_n be coordinates on \mathbb{C}^n , $\Lambda = \mathbb{Z}\lambda_1 \oplus \dots \oplus \mathbb{Z}\lambda_{2n}$ a full lattice and X the complex torus \mathbb{C}^n/Λ . Define the transition matrices $\widetilde{\Omega}$ and $\widetilde{\Pi}$ between the integral and complex structures on X as follows. If

$$\Omega = \begin{pmatrix} \lambda_{1,1} & \cdots & \lambda_{2n,1} \\ \vdots & & \vdots \\ \lambda_{1,n} & \cdots & \lambda_{2n,n} \end{pmatrix}$$

is the matrix whose column vectors are the coordinates of the vectors λ_i for $1 \leq i \leq 2n$, set $\widetilde{\Omega} = \begin{pmatrix} \Omega \\ \overline{\Omega} \end{pmatrix}$ and $\widetilde{\Pi} = (\Pi \quad \overline{\Pi})$, with $\widetilde{\Omega}\widetilde{\Pi} = Id$.

Let H be a Hermitian metric with constant coefficients on \mathbb{C}^n , and equip X with the induced metric. Describe harmonic forms and the Betti cohomology groups of X in terms of the holomorphic coordinates of \mathbb{C}^n .

Let $G = (g_{i,j})_{1 \leq i,j \leq 2n}$ be a skew-symmetric and integral matrix, and suppose that $\gamma = \sum g_{i,j} dx_i \wedge dx_j$ is a real positive definite (1, 1)-form. Use Π to express γ in terms of the coordinates z_k and show that Ω satisfies the *Riemann bilinear relations*:

$$\left\{ \begin{array}{l} i\overline{\Omega}G^{-1t}\Omega>0\\ \Omega G^{-1t}\Omega=0 \end{array} \right. \ (G \text{ integral and skew-symmetric})$$

Show that after a suitable change of coordinates, the matrix of G is:

$$G = \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix} \text{ with } D = \begin{pmatrix} d_1 & 0 \\ & \ddots & \\ 0 & & d_n \end{pmatrix}, d_i \in \mathbb{Z}.$$

Show that, if the first *n* vectors of Λ are identified with the standard basis of \mathbb{C}^n , $\Omega = (Id Z')$, and setting Z = Z'D, the Riemann relations become:

$${}^{t}Z = Z, \quad \Im(Z) > 0.$$

Give a criterion for a complex torus to be abelian in terms of Ω . Show that if n > 1 projective complex tori depend on $\frac{n(n+1)}{2}$ continuous parameters, so that there are many non abelian tori.

Let C be a compact connected complex curve, show that C is projective. Define the period map \mathcal{P} associated to the weight 1 Hodge structure on $(H^1(C,\mathbb{Z}), H^1(C,\mathbb{C}))$. Define $g = b_1(C)/2$. Show that the polarised period domain of X is contained in the Siegel upper half space \mathfrak{h}_q .

Part III, Paper 16

CAMBRIDGE

 $\mathbf{5}$

Let X be a compact Kähler manifold. Show that the map $H^k(X, \mathbb{C}) \to H^k(X, \mathcal{O}_X)$ induced by the inclusion $\mathbb{C} \subset \mathcal{O}_X$ and the projection map $H^k(X, \mathbb{C}) \to H^k(X, \mathcal{O}_X)$ induced by the Hodge decomposition coincide.

Show that the image of the map ${\rm Pic}X\to H^2(X,\mathbb{C})$ induced by the exponential sequence is contained in

$$H^{1,1}(X,\mathbb{Z}) = \operatorname{im}(H^2(X,\mathbb{Z}) \to H^2(X,\mathbb{C})) \cap H^{1,1}(X).$$

Use the Hodge decomposition to give a proof of the Lefschetz decomposition on (1, 1)classes: prove that $\operatorname{Pic} X \to H^{1,1}(X, \mathbb{Z})$ is surjective.

Show that a compact Kähler manifold X with $h^{2,0}(X) = 0$ is projective. (You may quote without proof Kodaira's Embedding Theorem).

END OF PAPER