MATHEMATICAL TRIPOS Part III

Friday, 3 June, 2011 1:30 pm to 4:30 pm

PAPER 15

MORSE HOMOLOGY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

- (i) Define Morse function.
- (ii) State the Morse Lemma.
- (iii) Define the Morse index.
- (iv) Show that being Morse is a C^2 -open condition.
- (v) State the parametric transversality theorem.
- (vi) Prove that Morse functions are dense inside the space of continuous functions.
- (vii) Prove that if M is a closed manifold with a Morse function which has exactly two critical points, then M is homeomorphic to a sphere.

$\mathbf{2}$

Let M be a closed manifold, and let $f: M \to \mathbb{R}$ be Morse.

- (i) Define the moduli space of $-\nabla f$ trajectories.
- (ii) State the Transversality Theorem for these moduli spaces.

From now on, assume that transversality holds for these moduli spaces.

- (iii) Prove that the moduli space of $-\nabla f$ trajectories between critical points p, q of index difference |p| |q| = 1 are compact.
- (iv) State a theorem describing a natural compactification of the moduli spaces when |p| |q| = 2.
- (v) Describe this compactification in the case of $M = \mathbb{R}P^2$. [You do **not** need to write a formula for f, it suffices that you draw the flowlines for an f that you have chosen]

 $\mathbf{2}$

UNIVERSITY OF

3

- (i) Define Fredholm map, Fredholm operator, Fredholm index.
- (ii) Explain how the operator

$$\partial_s + A_s : W^{1,2}(\mathbb{R}, \mathbb{R}^m) \to L^2(\mathbb{R}, \mathbb{R}^m)$$

3

arises in Morse homology, where the matrices $A_s \to A_{\pm\infty}$ as $s \to \pm\infty$, and where $A_{\pm\infty}$ is invertible and symmetric.

- (iii) Prove that $\partial_s + A_s$ is Fredholm. *You may quote the* Closed Range Lemma without proof
- (iv) State a theorem describing the Kernel and Cokernel of $\partial_s + A_s$.
- (v) Using (iv), compute the Fredholm index of $\partial_s + A_s$.

 $\mathbf{4}$

Let M be a closed manifold.

- (i) Define self-indexing Morse function and Morse-Smale metric.
- (ii) State the Handle Attaching Theorem.
- (iii) Outline the proof of the natural identification

 $MH_*(\text{self-indexing Morse function}) \cong H^{\text{cellular}}_*(M) \quad (\text{over } \mathbb{Z}/2\mathbb{Z}).$

[You may state without proof what the cellular differential is in terms of an intersection number, but please describe the generators of the cellular chain complex]

- (iv) Define *continuation maps* and state their properties at the chain level and at the homology level.
- (v) Deduce from (iv) the *Invariance Theorem* for Morse homology.
- (vi) Deduce from (v) a generalization of (iii) for any Morse function.
- (vii) Show that generically a function on a closed orientable surface must have at least 2 + 2g critical points, where g is the genus of the surface.

 $\mathbf{5}$

- (i) Define the meaning of generic subset (Baire subset), and state the Baire category theorem.
- (ii) State the Sard-Smale Theorem.
- (iii) State the Implicit Function Theorem for maps between Banach manifolds.
- (iv) Deduce from (iii) that if a section $F: M \to E$ of a Banach vector bundle is transverse to 0 [zero section of E] then $F^{-1}(0) \subset M$ is a submanifold and $T_p F^{-1}(0) = \ker D_p F$.
- (v) Suppose that $E \to M \times S$ is a Banach vector bundle, and F is a smooth section, and that for all (m, s) with F(m, s) = 0 the following hold:
 - (1) $D_{(m,s)}F: T_{(m,s)}(M \times S) \to E_{(m,s)}$ is surjective
 - (2) $D_m F_s : T_m M \to E_{(m,s)}$ is Fredholm of index k [where $F_s = F(\cdot, s)$]
 - (3) ker $D_{(m,s)}F$ has a closed complement. [This is a consequence of 1 and 2, but you need not prove it]

Then prove that $F_s^{-1}(0)$ is a smooth manifold of dimension k for generic $s \in S$. [You should prove any transversality result you use]

(vi) Briefly mention the setup in which this result is applied in Morse homology [when one proves the Transversality Theorem for moduli spaces].

END OF PAPER

4