

MATHEMATICAL TRIPOS Part III

Wednesday, 8 June, 2011 9:00 am to 12:00 pm

PAPER 14

DIFFERENTIAL GEOMETRY

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Define the cotangent bundle T^*M for a smooth manifold M. By constructing an appropriate family of charts, show that T^*M has a smooth structure making it into a vector bundle over M. Show further that the vector bundle T^*M can be endowed with an inner product varying smoothly with the fibres.

Now let M be the unit sphere S^2 and consider the subset Y of T^*S^2 consisting of all the unit vectors in cotangent spaces. Show that the vector bundle structure on T^*S^2 induces on Y structure of a principal S^1 -bundle over S^2 . Is Y isomorphic to a product bundle $S^2 \times S^1$? Justify your answer.

[Existence of a partition of unity may be assumed without proof, provided the result is accurately stated. You may assume that there are no continuous nowhere vanishing vector fields on S^2 .]

$\mathbf{2}$

Define what is meant by a Lie group G and left-invariant vector fields on G. Show that if X and Y are two left-invariant vector fields on G, then their Lie bracket [X, Y] is left-invariant and that the space of left-invariant vector fields on G is finite dimensional.

Let X_i , i = 1, ..., m, be a basis of left-invariant vector fields on G. Show that the identities $\omega^i(X_j) = \delta^i_j$ (δ^i_j is the Kronecker delta) determine smooth 1-forms ω^i , i = 1, ..., m, on G which are linearly independent at each point in G. Show further that the 1-forms ω^i satisfy

$$L_q^*(\omega^i) = \omega^i, \quad \text{for every } g \in G,$$

where $L_g(h) = gh$ for each $h \in G$. Let C_{ij}^k be a set of real constants determined by $[X_i, X_j] = \sum_k C_{ij}^k X_k$. Prove that, for each k,

$$d\omega^k = -\sum_{1\leqslant i < j\leqslant m} C^k_{ij} \omega^i \wedge \omega^j.$$

[You may assume the identity $d\omega(X,Y) = X\omega(Y) - Y\omega(X) - \omega([X,Y])$, for a 1-form ω and vector fields X, Y.]

CAMBRIDGE

3

Let A be a connection on a vector bundle E. Using local coordinates on the base manifold and a local trivialization of E, give an explicit formula for the covariant derivative d_A induced by A and acting on sections of E. Explain how to extend d_A , using an appropriate version of the Leibniz rule, to the differential forms with values in E and to the differential forms with values in the endomorphism bundle End E. For both cases, include explicit formulae for d_A in local trivializations.

3

Define the curvature F(A) of a connection A, showing that F(A) is a well-defined 2-form with values in End E. Prove the Bianchi identity $d_A F(A) = 0$

Prove that if E has rank 1 and A is a connection on E and a is a 1-form on the base manifold, then A + a is a connection with curvature F(A + a) = F(A) + da. Determine, giving justification, a more general version of the latter formula valid when the rank of E is greater than 1.

4

Define geodesic coordinates on a Riemannian manifold M. Show, stating clearly any preliminary results that you use, that geodesic coordinates exist on a neighbourhood of any point $p \in M$.

State and prove Gauss' Lemma.

[You may assume without proof that the length of $|\dot{\gamma}(t)|$ is constant for any geodesic $\gamma(t)$.]

$\mathbf{5}$

Let M be an oriented Riemannian manifold with a metric g. Define the volume form ω_g on M, showing that ω_g is well-defined. Define the Hodge star operator * and compute its square on p-forms.

Now suppose that M is compact. Recall that the linear operator δ is defined by $\delta \psi = (-1)^{n(p+1)+1} * d * \psi$ if ψ is a *p*-form on M, p > 0, $n = \dim M$, and $\delta f = 0$ if f is a function. Show that δ is the formal adjoint of d with respect to the L^2 inner product.

Define the Laplace–Beltrami operator Δ and state the Hodge decomposition theorem. Show that if $\Delta \psi = \lambda \psi$ for some real number λ and some *p*-form $\psi \neq 0$ ($p \ge 0$), then $\lambda \ge 0$.

END OF PAPER