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1

Let k > 1 be a natural number. Prove that, for n sufficiently large,
ex(n,C2k+1) = ⌊n

2

4 ⌋.

[You may assume the Erdős-Stone-Simonovits theorem provided it is stated correctly.]

Is it true that for any graph H of chromatic number 3 there exists a constant cH
such that ex(n,H) 6 n2

4 + cHn?

2

State and prove Szemerédi’s regularity lemma.

Deduce the triangle removal lemma.

3

Let H be a bipartite graph between two sets U and V such that the degree of every
vertex in V is at most ∆. Prove that there exists a constant c, depending on H, such that
ex(n,H) 6 cn2− 1

∆ .

Show that if there is only one vertex of degree ∆ in V and all other vertices in
V have degree at most ∆

8 , then there exists a constant c′, depending on H, such that

ex(n,H) 6 c′n2− 2

∆ .

4

Given an r-uniform hypergraph G on n vertices, let Ns be the number of copies of

K
(r)
s in G. Prove that

Ns+1 >
s2Ns

(s− r + 1)(s + 1)

(

Ns

Ns−1
−

(r − 1)(n− s) + s

s2

)

,

provided Ns−1 6= 0. Deduce that

Ns > Ns−1
r2
(

s

r

)

s2
(

n

r−1

)(e(G) − F (n, s, r)),

where F (n, s, r) = r−1((n−r+1)−
(

s−1
r−1

)−1
(n−s+1))

(

n

r−1

)

. By considering an appropriate
construction, conclude that

1−

(

r − 1

s − 1

)r−1

6 π(K(r)
s ) 6 1−

(

s− 1

r − 1

)

−1

.
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