MATHEMATICAL TRIPOS Part III

Monday, 13 June, 2011 1:30 pm to 3:30 pm

PAPER 11

EXTREMAL GRAPH THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Let $k \ge 1$ be a natural number. Prove that, for n sufficiently large, $ex(n, C_{2k+1}) = \lfloor \frac{n^2}{4} \rfloor$.

[You may assume the Erdős-Stone-Simonovits theorem provided it is stated correctly.]

Is it true that for any graph H of chromatic number 3 there exists a constant c_H such that $e_x(n, H) \leq \frac{n^2}{4} + c_H n$?

$\mathbf{2}$

State and prove Szemerédi's regularity lemma.

Deduce the triangle removal lemma.

3

Let H be a bipartite graph between two sets U and V such that the degree of every vertex in V is at most Δ . Prove that there exists a constant c, depending on H, such that $ex(n, H) \leq cn^{2-\frac{1}{\Delta}}$.

Show that if there is only one vertex of degree Δ in V and all other vertices in V have degree at most $\frac{\Delta}{8}$, then there exists a constant c', depending on H, such that $ex(n, H) \leq c' n^{2-\frac{2}{\Delta}}$.

$\mathbf{4}$

Given an *r*-uniform hypergraph \mathcal{G} on *n* vertices, let N_s be the number of copies of $K_s^{(r)}$ in \mathcal{G} . Prove that

$$N_{s+1} \ge \frac{s^2 N_s}{(s-r+1)(s+1)} \left(\frac{N_s}{N_{s-1}} - \frac{(r-1)(n-s) + s}{s^2}\right),$$

provided $N_{s-1} \neq 0$. Deduce that

$$N_s \ge N_{s-1} \frac{r^2 {\binom{n}{s}}}{s^2 {\binom{n}{r-1}}} (e(\mathcal{G}) - F(n, s, r)),$$

where $F(n, s, r) = r^{-1}((n-r+1) - {\binom{s-1}{r-1}}^{-1}(n-s+1)){\binom{n}{r-1}}$. By considering an appropriate construction, conclude that

$$1 - \left(\frac{r-1}{s-1}\right)^{r-1} \le \pi(K_s^{(r)}) \le 1 - \binom{s-1}{r-1}^{-1}.$$

Part III, Paper 11

3

END OF PAPER

Part III, Paper 11