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This question is about the arithmetic removal lemma. Suppose that G := F
n
2 and

A ⊂ G. Then we write T (A) for the proportion of additive triples in A, that is the
proportion of pairs (x, y) ∈ G2 for which x, y, x+ y ∈ A, so that

T (A) =

∫
1A(x)1A(y)1A(x+ y)dµG(x)dµG(y).

Give, with proof, an example of a set A ⊂ G with µG(A) = Ω(1) and T (A) = 0.

Prove the arithmetic removal lemma, that is prove the following. Suppose that
A ⊂ G is such that if A′ ⊂ A has T (A′) = 0 then µG(A \ A′) > ǫ. Then T (A) = Ωǫ(1).

Now write Q(A) for for the proportion of additive quadruples in A, that is the
proportion of triples (x, y, z) ∈ G3 for which x, y, z, x+ y + z ∈ A, so that

Q(A) =

∫
1A(x)1A(y)1A(z)1A(x+ y + z)dµG(x)dµG(y).

Show that if A ⊂ G has µG(A) > ǫ then Q(A) > ǫ4.
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This question concerns Boolean influence. Suppose that G = {0, 1}n (thought of as
a vector space over F2) and write (ei)i for the canonical basis of G so that ei is 1 in the ith
co-ordinate and 0 elsewhere. Given x ∈ G write xi for x · ei, and suppose that ǫ ∈ (0, 1].
Define

pǫ(x) :=

n∏

i=1

(1 + ǫ(−1)xi).

Prove Beckner’s inequality that

‖pǫ ∗ f‖L2(G) 6 ‖f‖
L1+ǫ2 (G)

for all f ∈ L1+ǫ2(G).

Hence prove that if A ⊂ G has density α > 0 then

∑

γ:|γ|=d

|1̂A(γ)|
2
6 O(log 2α−1)dα2,

where |γ| is the number of is such that γ(ei) = −1.

Finally recall that given a Boolean function f : G → {0, 1} the ith influence is
defined to be

σi(f) :=

∫
|fi|

2dµG(x) where fi(x) = f(x)− f(x+ ei).

Prove the KKL theorem, that if Var(f) = Ω(1), then there is some i such that

σi(f) = Ω

(
log n

n

)
.
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This question concerns the Balog-Szemerédi-Gowers lemma.

(a) Suppose that G := F
n
2 and A ⊂ G. We write

E(A) :=
∑

x+y=z+w

1A(x)1A(y)1A(z)1A(w)

for the additive energy of A, and we define the symmetry set of A at threshold η to be

Symη(A) := {x ∈ G : 1A ∗ 1A(x) > ηµG(A)}.

Suppose that E(A) > c|A|3 and put S := Symc/2(A). Prove that

〈1A ∗ 1A, 1S〉L2(G) > cµG(A)
2/2. (1)

Let X1, . . . ,Xr be elements of A chosen uniformly at random and put

A′ := {x ∈ A : x+Xi ∈ S for all i ∈ {1, . . . , r}}.

Using Hölder’s inequality and (1) (or otherwise) show that

E|A′|2 > (c/2)2r |A|2.

Now put B := {(x, y) ∈ A′2 : x+ y 6∈ Symc3/8(S)}, and show that

E|B| 6
1

2r
E|A′|2.

By picking r suitably in terms of ǫ show that there are values for the Xis such that

|A′| > cO(log ǫ−1)|A| and |B| 6 ǫ|A′2|.

We have shown that if E(A) > c|A|3 then there is a set A′ ⊂ A with |A′| >

cO(log ǫ−1)|A| such that

|{(x, y) ∈ A′2 : x+ y ∈ Symc3/8(S)}| > (1− ǫ)|A′|2.

(b) The above result was the original driving ingredient of the Balog-Szemerédi-Gowers
lemma, but now it is more common to use the following result.

Suppose that E(A) > c|A|3 and ǫ ∈ (0, 1] is a parameter. Then there is a subset
A′ ⊂ A with |A′| = Ω(c|A|) such that

|{(x, y) ∈ A′2 : x+ y ∈ Symǫc2/2(A)}| > (1− ǫ)|A′|2.

Assuming this last result prove the Balog-Szemerédi-Gowers lemma that if E(A) > c|A|3

then there is a subset A′ ⊂ A with |A′| > cO(1)|A| and |A′ +A′| 6 c−O(1)|A′|.
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The objective of this question is to prove a slight variant of the Rough Morphism
Theorem. Frĕıman’s theorem, the Balog-Szemerédi-Gowers lemma and Chang’s theorem
may all be assumed.

Suppose that S ⊂ G and φ : G → G is such that

µG2({(x, y) : φ(x+ y) = φ(x) + φ(y) and x, y, x+ y ∈ S}) > c

for some c > 0. Prove that there is a homomorphism θ : G → G such that

µG({x ∈ S : φ(x) = θ(x)}) > exp(−O(c−O(1))).

END OF PAPER
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