



 UNIVERSITY OF  
CAMBRIDGE

MATHEMATICAL TRIPPOS Part III

Tuesday, 7 June, 2011 1:30 pm to 3:30 pm

## PAPER 10

## ANALYSIS OF BOOLEAN FUNCTIONS

*Attempt no more than **TWO** questions.*

*There are **FOUR** questions in total.*

*The questions carry equal weight.*

## **STATIONERY REQUIREMENTS**

*Cover sheet*

### *Treasury Tag*

### *Script paper*

### ***SPECIAL REQUIREMENTS***

*None*

**You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.**

## 1

This question is about the arithmetic removal lemma. Suppose that  $G := \mathbb{F}_2^n$  and  $A \subset G$ . Then we write  $T(A)$  for the proportion of additive triples in  $A$ , that is the proportion of pairs  $(x, y) \in G^2$  for which  $x, y, x + y \in A$ , so that

$$T(A) = \int 1_A(x)1_A(y)1_A(x+y)d\mu_G(x)d\mu_G(y).$$

Give, with proof, an example of a set  $A \subset G$  with  $\mu_G(A) = \Omega(1)$  and  $T(A) = 0$ .

Prove the arithmetic removal lemma, that is prove the following. Suppose that  $A \subset G$  is such that if  $A' \subset A$  has  $T(A') = 0$  then  $\mu_G(A \setminus A') \geq \epsilon$ . Then  $T(A) = \Omega_\epsilon(1)$ .

Now write  $Q(A)$  for the proportion of additive quadruples in  $A$ , that is the proportion of triples  $(x, y, z) \in G^3$  for which  $x, y, z, x + y + z \in A$ , so that

$$Q(A) = \int 1_A(x)1_A(y)1_A(z)1_A(x+y+z)d\mu_G(x)d\mu_G(y).$$

Show that if  $A \subset G$  has  $\mu_G(A) \geq \epsilon$  then  $Q(A) \geq \epsilon^4$ .

## 2

This question concerns Boolean influence. Suppose that  $G = \{0, 1\}^n$  (thought of as a vector space over  $\mathbb{F}_2$ ) and write  $(e_i)_i$  for the canonical basis of  $G$  so that  $e_i$  is 1 in the  $i$ th co-ordinate and 0 elsewhere. Given  $x \in G$  write  $x_i$  for  $x \cdot e_i$ , and suppose that  $\epsilon \in (0, 1]$ . Define

$$p_\epsilon(x) := \prod_{i=1}^n (1 + \epsilon(-1)^{x_i}).$$

Prove Beckner's inequality that

$$\|p_\epsilon * f\|_{L^2(G)} \leq \|f\|_{L^{1+\epsilon^2}(G)} \text{ for all } f \in L^{1+\epsilon^2}(G).$$

Hence prove that if  $A \subset G$  has density  $\alpha > 0$  then

$$\sum_{\gamma:|\gamma|=d} |\widehat{1}_A(\gamma)|^2 \leq O(\log 2\alpha^{-1})^d \alpha^2,$$

where  $|\gamma|$  is the number of  $i$ s such that  $\gamma(e_i) = -1$ .

Finally recall that given a Boolean function  $f : G \rightarrow \{0, 1\}$  the  $i$ th influence is defined to be

$$\sigma_i(f) := \int |f_i|^2 d\mu_G(x) \text{ where } f_i(x) = f(x) - f(x + e_i).$$

Prove the KKL theorem, that if  $\text{Var}(f) = \Omega(1)$ , then there is some  $i$  such that

$$\sigma_i(f) = \Omega\left(\frac{\log n}{n}\right).$$

## 3

This question concerns the Balog-Szemerédi-Gowers lemma.

(a) Suppose that  $G := \mathbb{F}_2^n$  and  $A \subset G$ . We write

$$E(A) := \sum_{x+y=z+w} 1_A(x)1_A(y)1_A(z)1_A(w)$$

for the additive energy of  $A$ , and we define the symmetry set of  $A$  at threshold  $\eta$  to be

$$\text{Sym}_\eta(A) := \{x \in G : 1_A * 1_A(x) \geq \eta \mu_G(A)\}.$$

Suppose that  $E(A) \geq c|A|^3$  and put  $S := \text{Sym}_{c/2}(A)$ . Prove that

$$\langle 1_A * 1_A, 1_S \rangle_{L^2(G)} \geq c\mu_G(A)^2/2. \quad (1)$$

Let  $X_1, \dots, X_r$  be elements of  $A$  chosen uniformly at random and put

$$A' := \{x \in A : x + X_i \in S \text{ for all } i \in \{1, \dots, r\}\}.$$

Using Hölder's inequality and (1) (or otherwise) show that

$$\mathbb{E}|A'|^2 \geq (c/2)^{2r}|A|^2.$$

Now put  $B := \{(x, y) \in A'^2 : x + y \notin \text{Sym}_{c^3/8}(S)\}$ , and show that

$$\mathbb{E}|B| \leq \frac{1}{2^r} \mathbb{E}|A'|^2.$$

By picking  $r$  suitably in terms of  $\epsilon$  show that there are values for the  $X_i$ s such that

$$|A'| \geq c^{O(\log \epsilon^{-1})}|A| \text{ and } |B| \leq \epsilon|A'|^2.$$

We have shown that if  $E(A) \geq c|A|^3$  then there is a set  $A' \subset A$  with  $|A'| \geq c^{O(\log \epsilon^{-1})}|A|$  such that

$$|\{(x, y) \in A'^2 : x + y \in \text{Sym}_{c^3/8}(S)\}| \geq (1 - \epsilon)|A'|^2.$$

(b) The above result was the original driving ingredient of the Balog-Szemerédi-Gowers lemma, but now it is more common to use the following result.

Suppose that  $E(A) \geq c|A|^3$  and  $\epsilon \in (0, 1]$  is a parameter. Then there is a subset  $A' \subset A$  with  $|A'| = \Omega(c|A|)$  such that

$$|\{(x, y) \in A'^2 : x + y \in \text{Sym}_{\epsilon c^2/2}(A)\}| \geq (1 - \epsilon)|A'|^2.$$

Assuming this last result prove the Balog-Szemerédi-Gowers lemma that if  $E(A) \geq c|A|^3$  then there is a subset  $A' \subset A$  with  $|A'| \geq c^{O(1)}|A|$  and  $|A' + A'| \leq c^{-O(1)}|A'|$ .

4

The objective of this question is to prove a slight variant of the Rough Morphism Theorem. Freiman's theorem, the Balog-Szemerédi-Gowers lemma and Chang's theorem may all be assumed.

Suppose that  $S \subset G$  and  $\phi : G \rightarrow G$  is such that

$$\mu_{G^2}(\{(x, y) : \phi(x + y) = \phi(x) + \phi(y) \text{ and } x, y, x + y \in S\}) \geq c$$

for some  $c > 0$ . Prove that there is a homomorphism  $\theta : G \rightarrow G$  such that

$$\mu_G(\{x \in S : \phi(x) = \theta(x)\}) \geq \exp(-O(c^{-O(1)})).$$

**END OF PAPER**