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This question is about the arithmetic removal lemma. Suppose that G := F5 and
A C G. Then we write T'(A) for the proportion of additive triples in A, that is the
proportion of pairs (x,y) € G? for which z,y,z +y € A, so that

T(A) = / 1a(2) L4 (9)La( + y)dpc (@) duc(y).

Give, with proof, an example of a set A C G with ug(A4) = Q(1) and T(A) = 0.

Prove the arithmetic removal lemma, that is prove the following. Suppose that
A C G is such that if A’ C A has T'(A’) =0 then pug(A\ A’) > e. Then T(A4) = Q(1).

Now write Q(A) for for the proportion of additive quadruples in A, that is the
proportion of triples (z,y, z) € G® for which z,y, 2, +y + 2z € A, so that

Q(A) = / La(@)La@)La() LA + y + 2)dpc(@)du(y).

Show that if A C G has ug(A4) > € then Q(A) > €.
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This question concerns Boolean influence. Suppose that G = {0,1}" (thought of as
a vector space over Fq) and write (e;); for the canonical basis of G so that e; is 1 in the ith
co-ordinate and 0 elsewhere. Given x € G write z; for z - e;, and suppose that € € (0, 1].

Define n
H (1+ €
=1

Prove Beckner’s inequality that

1pe * fllz2) < fll ez for all f € L*(G).

Hence prove that if A C G has density o > 0 then

> [Ta()* < O(log 2a71)a?,

¥ilvl=d
where |7y| is the number of is such that y(e;) = —1.

Finally recall that given a Boolean function f : G — {0,1} the ith influence is
defined to be

- / fiPdua(z) where fi(x) = f(z) — f(z +eq).

Prove the KKL theorem, that if Var(f) = (1), then there is some ¢ such that

ai(f)zgcogn)

n
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This question concerns the Balog-Szemerédi-Gowers lemma.

(a) Suppose that G :=Fy and A C G. We write

E(A) == > la(@)la(y)la(z)la(w)

r+y=z+w

for the additive energy of A, and we define the symmetry set of A at threshold 7 to be
Sym, (A) :={x € G : 14 *1a(x) = nuc(A)}.
Suppose that E(A) > c|A|® and put S := Sym,/5(A). Prove that
(1ax1a,18)2(G) = cuc(A)?/2. (1)
Let X1,..., X, be elements of A chosen uniformly at random and put
Ai={reA:z+X,eSforallie{l,...,r}}
Using Holder’s inequality and (1) (or otherwise) show that
B4R > (/2) AP

Now put B := {(z,y) € A? 12 +y & Symgs 5(S)}, and show that
1 12
E|B| < 27E|A| .

By picking r suitably in terms of € show that there are values for the X;s such that

|4'| > PUose™)| 4] and |B| < €| A2

We have shown that if E(A) > c|A]® then there is a set A’ C A with |4/ >
©Uoge )| A| such that

{(z,y) € A : 2 4y € Symgs 5(S)}] = (1 — )| A"

(b) The above result was the original driving ingredient of the Balog-Szemerédi-Gowers
lemma, but now it is more common to use the following result.

Suppose that E(A) > c|A|? and € € (0,1] is a parameter. Then there is a subset
A" ¢ A with |A'] = Q(c|A]) such that

{(z.y) € A% 12 +y € Sym a5 (A)}] = (1 €)|A°.

Assuming this last result prove the Balog-Szemerédi-Gowers lemma that if F(A4) > ¢|A?
then there is a subset A’ C A with |4’| > PM|A4] and |4’ + 4’| < 9D 4.
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The objective of this question is to prove a slight variant of the Rough Morphism
Theorem. Freiman’s theorem, the Balog-Szemerédi-Gowers lemma and Chang’s theorem
may all be assumed.

Suppose that S C G and ¢ : G — G is such that

pez({(x,y) s ¢(x +y) = ¢(x) + #(y) and z,y,x +y € S}) > ¢

for some ¢ > 0. Prove that there is a homomorphism 6 : G — G such that

ne({z € S: ¢(x) = 6(x)}) > exp(—0(cM)).

END OF PAPER

Part III, Paper 10



