

MATHEMATICAL TRIPOS Part III

Wednesday, 2 June, 2010 9:00 am to 11:00 am

PAPER 9

RAMSEY THEORY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

 $\mathbf{2}$

 $\mathbf{1}$

By considering a colouring in which the colour of the edge from i to i + j is always different to the colour of the edge from i to i+2j, show that there exists a red-blue colouring of $\mathbb{N}^{(2)}$ in which there is no 3-term arithmetic progression M with $M^{(2)}$ monochromatic.

Now let *m* be a positive integer. Show that for any red-blue colouring of $\mathbb{N}^{(2)}$ there exists *either* an *m*-term arithmetic progression *M* with $M^{(2)}$ blue *or* disjoint *m*-term arithmetic progressions *A* and *B* with every edge from *A* to *B* red.

[Hint: Suppose that every m-term arithmetic progression has at least one of its $\binom{m}{2}$ edges red. This gives a colouring of \mathbb{N}^2 with $\binom{m}{2}$ colours, by colouring $(a, d) \in \mathbb{N}^2$ according to which edge of the arithmetic progression with first term a and common difference d is red. Now apply Gallai's theorem.]

$\mathbf{2}$

State and prove Rado's theorem.

[You may assume that, for any m, p, c, whenever \mathbb{N} is finitely coloured there is a monochromatic (m, p, c)-set.]

Deduce that, for any k, whenever \mathbb{N} is finitely coloured there exist x_1, x_2, \ldots, x_k with $FS(x_1, x_2, \ldots, x_k)$ monochromatic.

3

Using Hindman's theorem, show that there exists an ultrafilter on \mathbb{N} , each member of which contains a set of the form $FS(x_1, x_2, \ldots)$ (where $x_1, x_2, \ldots \in \mathbb{N}$).

[*Hint: which are the sets that must belong to such an ultrafilter?*]

By considering the set $\{x \in \mathbb{N} : 2^n \leq x < 2^{n+1}, \text{ some even } n\}$, or otherwise, show that there is more than one such ultrafilter.

CAMBRIDGE

 $\mathbf{4}$

What does it mean to say that a subset of $\mathbb{N}^{(\omega)}$ is *Ramsey*? Give an example of a set that is not Ramsey.

Prove that every *-meagre set is *-nowhere-dense. [You may assume the Galvin-Prikry lemma.]

Find, with justification, examples of each of the following:

- (i) A set that is τ -meagre but not τ -nowhere-dense,
- (ii) A countable union of *-closed sets that is not *-closed.

END OF PAPER