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1

By considering a colouring in which the colour of the edge from i to i + j is always
different to the colour of the edge from i to i+2j, show that there exists a red-blue colouring
of N

(2) in which there is no 3-term arithmetic progression M with M (2) monochromatic.

Now let m be a positive integer. Show that for any red-blue colouring of N
(2)

there exists either an m-term arithmetic progression M with M (2) blue or disjoint m-term
arithmetic progressions A and B with every edge from A to B red.

[Hint: Suppose that every m-term arithmetic progression has at least one of its
(

m

2

)

edges red. This gives a colouring of N
2 with

(

m

2

)

colours, by colouring (a, d) ∈ N
2 according

to which edge of the arithmetic progression with first term a and common difference d is

red. Now apply Gallai’s theorem.]

2

State and prove Rado’s theorem.

[You may assume that, for any m, p, c, whenever N is finitely coloured there is a

monochromatic (m, p, c)-set.]

Deduce that, for any k, whenever N is finitely coloured there exist x1, x2, . . . , xk

with FS(x1, x2, . . . , xk) monochromatic.

3

Using Hindman’s theorem, show that there exists an ultrafilter on N, each member
of which contains a set of the form FS(x1, x2, . . .) (where x1, x2, . . . ∈ N).

[Hint: which are the sets that must belong to such an ultrafilter?]

By considering the set {x ∈ N : 2n 6 x < 2n+1, some even n}, or otherwise, show
that there is more than one such ultrafilter.
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4

What does it mean to say that a subset of N
(ω) is Ramsey? Give an example of a

set that is not Ramsey.

Prove that every *-meagre set is *-nowhere-dense. [You may assume the Galvin-

Prikry lemma.]

Find, with justification, examples of each of the following:

(i) A set that is τ -meagre but not τ -nowhere-dense,

(ii) A countable union of *-closed sets that is not *-closed.

END OF PAPER

Part III, Paper 9


	Rubric
	1
	2
	3
	4

