MATHEMATICAL TRIPOS Part III

Tuesday, 8 June, 2010 $\,$ 1:30 pm to 4:30 pm

PAPER 75

TOPOS THEORY

Attempt no more than **FIVE** questions. There are **TEN** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

What is a topos? Show according to your definition that a presheaf category $[\mathbb{C}^{op}, \text{Set}]$ is a topos.

$\mathbf{2}$

Let \mathcal{C} be a cartesian category. Show that if X in \mathcal{C} has a power object, then so does any subobject of X. Deduce that if \mathcal{E} is a cartesian category with power objects, then so is \mathcal{E}/A for any object A of \mathcal{E} .

3

Suppose that \mathcal{E} is a cartesian and cartesian closed category. Let G be a cartesian comonad on \mathcal{E} . Show that the category \mathcal{E}_G of G-coalgebras is cartesian and cartesian closed.

4

Let $f : \mathcal{F} \to \mathcal{E}$ be a geometric morphism between toposes. Let the map $\overline{\lambda} : f^*(\Omega_{\mathcal{E}}) \to \Omega_{\mathcal{F}}$ classify the subobject $f^*(1) \to f^*(\Omega_{\mathcal{E}})$.

(i) Suppose that $a: X \to \Omega_{\mathcal{E}}$ classifies the subobject $A \to X$. Show that $\overline{\lambda}.f^*(a)$ classifies $f^*A \to f^*X$.

(ii) Show that if the transpose $\lambda : \Omega_{\mathcal{E}} \to f_*(\Omega_{\mathcal{F}})$ is monic then f is a surjection.

(iii) Show conversely that if f is a surjection then λ is monic.

$\mathbf{5}$

(i) Show that a functor $T : \mathbb{C} \to \mathbb{D}$ induces a geometric morphism $[\mathbb{C}^{op}, \text{Set}] \to [\mathbb{D}^{op}, \text{Set}]$, whose inverse image is given by composition with T.

(ii) Show that this geometric morphism is a surjection if and only if every object of D is a retract of one in the image of T.

(iii) Show that this geometric morphism is an injection if and only if T is full and faithful.

UNIVERSITY OF

6

Suppose that $\mathcal E$ is a topos, and $\mathcal L$ a reflective subcategory with cartesian reflector $L:\mathcal E\to\mathcal L$.

(i) Explain why \mathcal{L} is cartesian.

(ii) Show that \mathcal{L} is cartesian closed.

(iii) Define the universal closure operation c_L induced by L.

(iv) Let $j: \Omega \to \Omega$ classify the c_L -closure of the generic subobject $1 \to \Omega$. Show that $a: E \to \Omega$ classifies a c_L -closed subobject of E if and only if j.a = a.

(v) Explain briefly why Ω_j , the equalizer of j and the identity gives a subobject classifier for \mathcal{L} .

$\mathbf{7}$

Suppose that $f: A \to B$ is a map in a category \mathcal{C} .

(i) Let \mathcal{C} be a cartesian category. Show that

 $\mathcal{C} \vDash f(x) = f(x') \vdash_{x,x'} x = x'$

if and only if f is monic.

(ii) Let \mathcal{C} be a regular category. Show that

$$\mathcal{C} \vDash \top \vdash_y \exists x. f(x) = y$$

if and only if f is a cover.

Now suppose that C is a regular category and $\phi(x, y)$ is a regular formula interpreted in C with x of sort A and y of sort B. Suppose further that the sequents

$$\phi(x,y) \land \phi(x,y') \vdash_{x,y,y'} y = y'$$
 and $\top \vdash_x \exists y.\phi(x,y)$

hold in \mathcal{C} . Show that $\phi(x, y)$ defines a map $f : A \to B$ in \mathcal{C} .

Part III, Paper 75

[TURN OVER

CAMBRIDGE

8

What is a coherent category? Suppose that $A \rightarrow X$ and $B \rightarrow X$ are subobjects of X in a coherent category. Show that $A \lor B$ lies in a pushout diagram of A and B with initial vertex $A \land B$.

(You may make use of the internal logic of a coherent category without justification. You need not prove that the subobject lattices in coherent categories are distributive.)

9

What is a classifying topos for a coherent theory? Describe a construction of a classifying topos for a coherent theory, and sketch a proof that your construction does indeed give a classifying topos.

10

Let \mathbb{P}_1 be the theory of partial orders with axioms

 $\top \vdash x \leqslant x, x \leqslant y \land y \leqslant z \vdash x \leqslant z$ and $x \leqslant y \land y \leqslant x \vdash x = y,$

and \mathbb{P}_2 the theory of partial orders with axioms

 $x < y \land y < z \vdash x < z$ and $x < x \vdash \bot$.

Identify the classifying toposes \mathcal{E}_1 for \mathbb{P}_1 and \mathcal{E}_2 for \mathbb{P}_2 as presheaf toposes. Show that how to interpret \mathbb{P}_1 in \mathbb{P}_2 . Identify the geometric morphism which this gives rise to. Is it a surjection or an injection?

Now let \mathbb{L}_1 be \mathbb{P}_1 extended by $\top \vdash x \leq y \lor y \leq x$, and let \mathbb{L}_2 be \mathbb{P}_2 extended by $\top \vdash x < y \lor x = y \lor y < x$. Are the classifying toposes \mathcal{F}_1 for \mathbb{P}_1 and \mathcal{F}_2 for \mathbb{P}_2 presheaf toposes? Does the above geometric morphism restrict to the corresponding subtoposes? Justify your answers.

END OF PAPER