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Consider a spherical cavity of radius R in a porous medium of permeability II. The
cavity and the pores of the surrounding medium are filled with water and the whole system
is initially at a uniform temperature T, < T;, = 0°C. Ice nucleates at the centre of the
cavity and grows as a spherical solid of radius a(¢). Assume that the pressure inside the
cavity is uniform and that flow in the porous medium is governed by Darcy’s equation.

Show that the pressure in the cavity is

2.
p ps\ a’d

= Z (15
p pm+H< p)R’

where py, is the far-field pressure in the porous medium, equal to atmospheric pressure, p
and p are the density and dynamic viscosity of water respectively, and p; is the density of
ice.

Determine the temperature field, ignoring the Gibbs—-Thomson effect and making
the quasi-stationary approximation. Hence show that

2\ . x
(x—i-?)x:l, and p—pm:aH_Kp*,
where )
RepsL

z(7) = a(t)/R, t = )

1 L? 1 T — T ps\ !
K = —_ p*:pLu<__5> ,

(1/ps - 1/0)2 kTm 2 ° Tm P

k is the thermal conductivity of water and L is the latent heat of fusion. Interpret these
results in the limits K > 1 and K < 1, giving the leading-order expressions for p(x)
and z(t) in each case.
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The rapid solidification of a pure, supercooled melt can be unstable to morphological
instability. When the Stefan number & < 1, the kinetic rates of attachment become im-
portant. Consider a linear law relating the growth rate @ with the interfacial supercooling
and write down the interfacial temperature including the effect of curvature for a planar
solid-liquid interface growing into a supercooled melt. Find the steady state thermal field
and interfacial temperature. Show that for & < 1 the growth rate is constant, ¢ =V,
and is only a function of the Stefan number and the kinetic coefficient.

Next, examine the stability of the solid-liquid interface and show that the growth
rate of perturbations ¢ is given by

o <1+ %) =SV -Ta?-SV?/p

where V' is the non-dimensional interface velocity, I' is the non-dimensional surface energy
density, « is the non-dimensional wavenumber of perturbations and

1
p=3; [V+ VV2+4(0 +a?)

Discuss the morphological stability of the interface for S = 0 and § = 1. For
0 < S <1 find the growth rate ¢ = o(«) in the small and large o limits. Assume that
o = 0(a?) as a — 0 and show that

U~<§—F)a2 as a — 0.

Find an expression for o for a > 1. Hence sketch o(«) for a few values of I and
give approximate conditions for morphological instability.
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Consider the ablation of the vertical terminus of a glacier in a warm ocean, driven
by the flux of heat and solute at the ice-ocean interface. Write down expressions for
conservation of mass and momentum in a steady turbulent plume of width b and mean
vertical velocity w whose rise is driven principally by contrasts in salinity, neglecting the
effective wall shear stress. By considering conservation of heat (enthalpy) and solute within
a horizontal slab spanning the plume, derive the expressions

4 [bw(T—TOO)} = a[£ + Too —TS} ,

dz Cp

dz

where T and C' are the mean temperature and salinity within the plume, T, and Cy
are the temperature and salinity of the far-field ocean, & is the ablation rate of the
glacial terminus (defined as positive for growth and negative for ablation), C; is the solute
concentration within the ice, T is the temperature of the ice and £ and ¢, are the latent
heat of fusion and the specific heat capacity respectively.

d {bw(c _ COO)} = 4(Coo — Cs),

Examine the large Stefan number limit, £/c, > T —Ts. At the ice-ocean interface
the temperature T; and salinity C; are in thermodynamic equilibrium. Assume that heat
and solute fluxes from the plume to the ice can be approximated by diffusive fluxes across
a laminar boundary layer of constant width §. For simplicity neglect diffusion in the solid,
and take the limits Too —T; > Too — T and Co — C; > Coo — C.

Find power law solutions of the plume equations and determine the interfacial
temperature and composition as a function of the compositional Peclet number Pe. =
—ad/D . Show that the rate of ablation is given by

L D (Coo — Cs)

— — Pe, =T — Ty + 1 ———=

e K Ce o m+ 1+ Pe, ’
where the liquidus is approximated by the linear relationship 77 (C) =T, —-I'(C—-Cs), D
is the diffusivity of solute and & is the thermal diffusivity. Sketch a typical compositional
and thermal profile from the interface, through the laminar boundary layer and across
the plume to the far-field. Examine the limits Pe. > 1 and Pe. < 1 discussing the
dominant mechanism driving ablation of the glacier in each limit (melting/dissolution).

Part III, Paper 72



NIVERSITY OF
AMBRIDGE 5

@)

An aqueous salt solution of concentration Cjy, liquidus 7' = —mC (m constant),
segregation coefficient kp = 0 and diffusivity D is pulled downwards at constant speed V'
through a fixed temperature field T'=Tg + Gz, where T is the eutectic temperature, z
measures distance upwards and G is the constant temperature gradient.

Explain why there can be no steady state with completely solid ice growing from
the solution. Sketch the temperature and liquidus temperature fields in physical space
and the trajectory (C(z),T(z)) in the phase diagram when there is a steady, equilibrium
mushy layer. Using the marginal equilibrium hypothesis and including diffusion of salt in
the mushy layer, show that the constant thickness of the mushy layer

—mCo - TE' D
hy = —— — =
G %4
and the solid fraction distribution

ho—Z
mCoy/G + hy — z

o = (0 <z < ho).

At some time t = 0, after the steady mushy layer has been established, the system
is brought to rest (V = 0) in the same fixed temperature field, and an impermeable
membrane is inserted at z = hg. Show that during the subsequent evolution of the mushy
layer, the solid fraction

o(z,t) = f(n) where n =2°+ (2Tg/G)z + 2Dt

and that, therefore, the position h(t) of the mush-liquid interface is given by

T\ T\
ECA) “EY) _ opt.
(h+G> (h0+G) t

Use physical reasoning to sketch the solid-fraction distribution at time ¢ =0, at an
intermediate time later, and in the final steady state. Characterize the final state as far
as you can.
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