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Consider a spherical cavity of radius R in a porous medium of permeability Π. The

cavity and the pores of the surrounding medium are filled with water and the whole system

is initially at a uniform temperature T∞ < Tm = 0◦C. Ice nucleates at the centre of the

cavity and grows as a spherical solid of radius a(t). Assume that the pressure inside the

cavity is uniform and that flow in the porous medium is governed by Darcy’s equation.

Show that the pressure in the cavity is

p = pm +
µ

Π

(

1 −
ρs

ρ

)

a2ȧ

R
,

where pm is the far-field pressure in the porous medium, equal to atmospheric pressure, ρ

and µ are the density and dynamic viscosity of water respectively, and ρs is the density of

ice.

Determine the temperature field, ignoring the Gibbs–Thomson effect and making

the quasi-stationary approximation. Hence show that

(

x +
x2

K

)

ẋ = 1 , and p − pm =
x

x + K
p∗ ,

where

x(τ) = a(t)/R , t =
R2ρsL

k(Tm − T∞)
τ ,

K =
1

(1/ρs − 1/ρ)2
L2

kTm

Π

µ
, p∗ = ρsL

Tm − T∞

Tm

(

1 −
ρs

ρ

)

−1

,

k is the thermal conductivity of water and L is the latent heat of fusion. Interpret these

results in the limits K ≫ 1 and K ≪ 1 , giving the leading-order expressions for p(x)

and x(t) in each case.
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The rapid solidification of a pure, supercooled melt can be unstable to morphological
instability. When the Stefan number S < 1 , the kinetic rates of attachment become im-
portant. Consider a linear law relating the growth rate ȧ with the interfacial supercooling
and write down the interfacial temperature including the effect of curvature for a planar
solid-liquid interface growing into a supercooled melt. Find the steady state thermal field
and interfacial temperature. Show that for S < 1 the growth rate is constant, ȧ = V ,
and is only a function of the Stefan number and the kinetic coefficient.

Next, examine the stability of the solid-liquid interface and show that the growth
rate of perturbations σ is given by

σ

(

1 +
S

p

)

= SV − Γα2
− SV 2/p

where V is the non-dimensional interface velocity, Γ is the non-dimensional surface energy
density, α is the non-dimensional wavenumber of perturbations and

p =
1

2

[

V +
√

V 2 + 4(σ + α2)
]

.

Discuss the morphological stability of the interface for S = 0 and S = 1 . For
0 < S < 1 find the growth rate σ = σ(α) in the small and large α limits. Assume that
σ = O(α2) as α → 0 and show that

σ ∼

(

S

V
− Γ

)

α2 as α → 0 .

Find an expression for σ for α ≫ 1 . Hence sketch σ(α) for a few values of Γ and
give approximate conditions for morphological instability.
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Consider the ablation of the vertical terminus of a glacier in a warm ocean, driven
by the flux of heat and solute at the ice–ocean interface. Write down expressions for
conservation of mass and momentum in a steady turbulent plume of width b and mean
vertical velocity w whose rise is driven principally by contrasts in salinity, neglecting the
effective wall shear stress. By considering conservation of heat (enthalpy) and solute within
a horizontal slab spanning the plume, derive the expressions

d

dz

[

bw(T − T∞)

]

= ȧ

[

L

cp

+ T∞ − Ts

]

,

d

dz

[

bw(C − C∞)

]

= ȧ(C∞ − Cs) ,

where T and C are the mean temperature and salinity within the plume, T∞ and C∞

are the temperature and salinity of the far-field ocean, ȧ is the ablation rate of the
glacial terminus (defined as positive for growth and negative for ablation), Cs is the solute
concentration within the ice, Ts is the temperature of the ice and L and cp are the latent
heat of fusion and the specific heat capacity respectively.

Examine the large Stefan number limit, L/cp ≫ T∞−Ts . At the ice-ocean interface
the temperature Ti and salinity Ci are in thermodynamic equilibrium. Assume that heat
and solute fluxes from the plume to the ice can be approximated by diffusive fluxes across
a laminar boundary layer of constant width δ. For simplicity neglect diffusion in the solid,
and take the limits T∞ − Ti ≫ T∞ − T and C∞ − Ci ≫ C∞ − C .

Find power law solutions of the plume equations and determine the interfacial
temperature and composition as a function of the compositional Peclet number Pec ≡

−ȧδ/D . Show that the rate of ablation is given by

L

cp

D

κ
Pec = T∞ − Tm + Γ

(C∞ − Cs)

1 + Pec

,

where the liquidus is approximated by the linear relationship TL(C) = Tm−Γ(C−Cs) , D
is the diffusivity of solute and κ is the thermal diffusivity. Sketch a typical compositional
and thermal profile from the interface, through the laminar boundary layer and across
the plume to the far-field. Examine the limits Pec ≫ 1 and Pec ≪ 1 discussing the
dominant mechanism driving ablation of the glacier in each limit (melting/dissolution).
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An aqueous salt solution of concentration C0, liquidus T = −mC (m constant),

segregation coefficient kD = 0 and diffusivity D is pulled downwards at constant speed V

through a fixed temperature field T = TE + Gz , where TE is the eutectic temperature, z

measures distance upwards and G is the constant temperature gradient.

Explain why there can be no steady state with completely solid ice growing from

the solution. Sketch the temperature and liquidus temperature fields in physical space

and the trajectory (C(z), T (z)) in the phase diagram when there is a steady, equilibrium

mushy layer. Using the marginal equilibrium hypothesis and including diffusion of salt in

the mushy layer, show that the constant thickness of the mushy layer

h0 =
−mC0 − TE

G
−

D

V

and the solid fraction distribution

φ =
h0 − z

mC0/G + h0 − z
(0 < z < h0) .

At some time t = 0 , after the steady mushy layer has been established, the system

is brought to rest (V = 0) in the same fixed temperature field, and an impermeable

membrane is inserted at z = h0 . Show that during the subsequent evolution of the mushy

layer, the solid fraction

φ(z, t) = f(η) where η = z2 + (2TE/G)z + 2Dt

and that, therefore, the position h(t) of the mush–liquid interface is given by

(

h +
TE

G

)2

=

(

h0 +
TE

G

)2

− 2Dt .

Use physical reasoning to sketch the solid-fraction distribution at time t = 0 , at an

intermediate time later, and in the final steady state. Characterize the final state as far

as you can.
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