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Consider a channel of uniform width inclined at a constant angle θ to the horizontal.
Suppose there is a thin turbulent layer of fluid of density ρ and thickness h flowing in the
positive x direction along the channel. Here x is taken as parallel with the channel in
down-slope direction and z is perpendicular to the channel. The fluid above the thin layer
is at rest with a constant density ρ0.

(a) Explain the Boussinesq approximation and how the thinness of the fluid layer can be
used to simplify the form of u. Relate the ‘shallow water’ approximation for a gravity
current to the ‘top-hat’ approximation for a turbulent plume.

(b) The drag between the fluid layer and the channel is negligible, but the fluid within
the layer is turbulent resulting in ‘Batchelor entrainment’ described by the entrainment
velocity we = α |u|, where α is assumed constant. Derive a suitable system of equations,
using the top-hat distribution, and show that the system is hyperbolic provided θ 6= π/2.

(c) Suppose the flow is driven by a steady line source (spanning the width of the channel)
providing constant buoyancy flux F0 (per unit length) at x = 0 with negligible momentum
or volume flux. By searching for a power-law solution, determine how the thickness,
velocity and density of the thin layer vary along its length. Over what range of angles is
this solution valid?
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Consider a two-dimensional stably stratified atmosphere with buoyancy frequency
N(z) and mean wind field U = (U(z), 0) flowing across an extensive range of sinusoidal
hills of height h = h0 sin(2πx/L). Here, x is horizontal in the down-wind direction and z
is vertically upwards.

(a) For a uniform wind U(z) = U0 and stratification N(z) = N0, sketch the linear wave
field generated by the hills. Label your sketch, showing the directions of the phase and
group velocities in the frame of reference of the hills. On a separate sketch, show the
directions of the phase and group velocities in a frame of reference moving with the mean
wind speed. State any restrictions on L, U0 or h0 in this analysis.

(b) State the ‘WKB approximation’ as it relates to steady internal waves in a stratified
shear flow. For a uniform velocity U(z) = U0, sketch the wave field in the frame of the
hills when (i) N = N0(1 + z/H) and (ii) N = N0(1 − z/H). Identify the wave crests and
the direction of energy propagation. You need not compute the actual path taken, but
you should comment on any particular features expected.

(c) By linearising the equations of motion in the x− z plane about the mean wind profile
U = (U(z), 0), show that under the WKB approximation

m2 =

(

N2

k2U2
−

U ′′

k2U
− 1

)

k2 ,

where k = (k,m) is the wavenumber vector. What restrictions are placed on m by causality
if there are no downward propagating waves? Assuming U ′′ is negligible and N(z) = N0,
identify the conditions under which critical layer absorption and critical layer reflection
can take place, and describe these phenomena. For the specific profiles U = U0(1 + z/H)
and U = U0(1 − z/H), identify whether absorption or reflection occur and determine the
corresponding critical height z = ζ. Express this height in terms of the topographic length
scale L rather than wavenumber components.

(d) Determine the path taken by a packet of wave energy released at (x, z) = (0, 0) when
N(z) = N0 and U(z) = U0(1 + z/H).
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Consider a very long lake of maximum depth H with a uniform parabolic cross-
section described by width b(x, z) = z1/2 for z > 0.

(a) Derive the shallow water equations for this geometry and show that the surface wave
speed is given by

c =

√

2

3
gh ,

where the water surface is at height z = h and g is gravity. Determine the characteristics
of these equations and the evolution equation(s) along these characteristics.

(b) A dam is constructed across the middle of the lake at x = 0. A large quantity of
sediment is raised from the bottom of the lake during the construction of the dam. At
t = 0 this sediment occupies a region of depth h0 ≪ H and length L0. The sediment has
a density ρp, settling velocity Ws and initial concentration φ0 ≪ 1. The density of the
fresh lake water is ρ0 < ρp so that for t > 0 this sediment-laden layer flows as a gravity
current along the bottom of the lake. Give an expression for the reduced gravity g′ and
hence the speed of long waves on the interface between the sediment-laden layer and the
fresh lake water. Describe a suitable boundary condition for the front of the current. By
assuming the volume of the current is preserved, derive an integral model to determine
L∞ , the maximum extent of the current. You may assume the particles still in suspension
remain well-mixed throughout the current.

(c) After the dam is completed, the water is drained from the right-hand half of the lake.
Sometime later, the dam fails catastrophically and water floods back into the right-hand
half of the lake. Describe the initial development of the flow, illustrating key features on
an x − t diagram and commenting on the applicability of the shallow water equations.
Give an expression for the depth of the flow.

(d) A hydraulic bore forms to the right of the failed dam as the drained half of the lake
fills following the failure of the dam. Derive suitable ‘jump conditions’ relating the flow on
either side of the bore to the speed of the bore. Describe, in terms of the characteristics
of the flow, the conditions necessary for the bore to be stationary.
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(a) Describe the Stokes drift mechanism for linear surface waves and show that in
deep water the drift velocity is given by

us = η2

0 k ω e 2kz ,

where the elevation of the surface is η(x, t) = η0 cos(kx − ωt) with k the wavenumber,
2π/ω the wave period and z is directed upwards from the undisturbed surface at z = 0.

(b) The dispersion relation for inviscid two-dimensional linear plane internal gravity waves
of period 2π/ω propagating on a stationary fluid can be expressed as

ω

N
= cos θ ,

where N is the buoyancy frequency and θ is the angle between the wavenumber vector
k = (k,m) and the horizontal x axis. What happens if ω > N? Give expressions for the
phase velocity cp and group velocity cg in terms of N , |k| and θ. Explain why there can be
no Stokes drift mechanism for inviscid linear internal gravity waves described by a single
wavenumber vector k.

(c) Suppose a steady periodic disturbance at the lower boundary of a semi-infinite fluid
with constant N induces a vertical velocity w(x, z = 0) = 2W cos(κx) cos(ωt). This
disturbance generates two sets of linear waves described by wavenumber vectors k1 and
k2 such that |k1| = |k2| and k1 · k2 = 0 . Determine and describe the structure of the
resulting wave field. Analyse this wave field to determine the associated Stokes drift. Is
this drift physically reasonable?

END OF PAPER
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