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(a) Describe the main steps of the Wiener-Hopf technique for solving boundary
value problems with boundary conditions along an infinite line that have a discontinuity,
and state - without proof - the main theorems on which it relies.

(b) Consider the 2-dimensional problem of a plane wave

φi = e ikx cos θ− iky sin θ

incident with angle θ to the horizontal x upon an infinite plane at y = 0. The plane
is characterized by Dirichlet boundary conditions for x < 0, and by Neumann boundary
conditions for x > 0:

φt(x, 0) = 0 x < 0 ,

∂φt(x, 0)

∂y
= 0 x > 0 ,

where φt is the total field, which may be written as φt = φi + φr + φd , where φi is the
incident field, the reflected field φr is defined as

φr = −e ikx cos θ + iky sin θ

and φd is the field diffracted by the discontinuity. At the discontinuity the field remains
bounded, and we have

∂φt(x, 0)

∂y
∼ x−1/2 as x → 0+ .

Use the Wiener-Hopf technique to find an expression for the diffracted field φd, hence the
total field. You need not calculate the final integral, but should explain how to choose the
integration path needed for its calculation.

[Hint: you may find it useful to solve this as a diffraction problem for φd, by first finding
boundary conditions for φd on the plane y = 0.]
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A time-harmonic scalar wave ψe−iωt is a superposition of plane waves propagating
with wavenumber k at small angles to the horizontal x in a 3-dimensional medium (x, y, z).
The medium is characterised by refractive index n(x, y, z), defined as

n(x, y, z) = 1 + µW (x, y, z)

where µ is a constant and W (x, y, z) is the random part, which is normally distributed
and statistically stationary, and has been normalised so that 〈W 〉 = 0 and 〈W 2〉 = 1 .
The slowly-varying part of ψ, E(x, y, z) = ψ(x, y, z) e−ikx , obeys the parabolic equation.

(a) Derive an equation of propagation for the first moment of the field, 〈E(x, y, z)〉,
and write the solution 〈E(x, y, z)〉 at a generic point x in the medium.

(b) Assume now that the medium is isotropic, and δ-correlated in the direction of
propagation x:

〈W (x, y1, z1)W (x, y2, z2)〉 = δ(x1 − x2)A(η, ζ) ,

where A is a differentiable function of the distances η = y1 − y2 and ζ = z1 − z2 .

Given the definition of the power spectrum as the Fourier Transform of an autocorrelation
function, express the solution 〈E(x, y, z)〉 in terms of the power spectrum of the refractive
index of the medium.

[Use the following result:

If f(η, ζ) is isotropic, so f(r, θ) = f(r) in polar coordinates (r, θ), and

F (νη, νζ) =

∫
∞

−∞

∫
∞

−∞

f(η, ζ) e−i(νηη + νζζ) dη dζ ,

then the following applies:

F (νη, νζ) = F (ν) =

∫
∞

0
f(r)J0(νr) r dr , where ν = |(νη, νζ)| ,

and J0(νr) is a Bessel function, together with the inverse transform

f(ν) =

∫
∞

0
F (ν)J0(νr) ν dν .

Use also J0(0) = 1.]

(c) Write now an explicit expression for the above solution in the case when the
medium has power spectrum given by:

S(ν) = µ2L3e−(νL)2/4 ,

where L is the correlation length of the medium.
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Consider the 2-dimensional problem of a time-harmonic, monochromatic acoustic
plane wave incident upon a perfectly reflecting randomly rough surface defined by
z = h(x), with mean 〈h(x)〉 = 0 and r.m.s. height σ.

(a) Assuming that the variation in surface height is small, |kh(x)| ≪ 1, use first
order perturbation theory to derive an expression for the scattered field ψs(x, z) in the
case of Dirichlet boundary conditions: ψ = 0 at the surface.

(b) In the case when the surface is statistically stationary, derive an expression for
the mean scattered intensity in the far field in terms of the power spectrum of the surface.

(c) Consider now the 3-dimensional problem of an incident time-harmonic, monochro-
matic, linearly polarized electromagnetic wave with wave vector k in the (x, z) plane, in-
cident upon a perfectly conducting 2-dimensional surface which has a statistically random
profile in x, but is constant in y (i.e. a ‘corrugated’ surface with h(x, y) = h(x, y′) ∀ y, y′ ).

Show that for a TE wave (where the electric field is perpendicular to the x, z plane and
parallel to the x, y plane), this problem can be reduced to the 2-dimensional problem
considered in (a).

Does this also work for a TM wave (where the magnetic field is perpendicular to the (x, z)
plane and parallel to the (x, y) plane)? Give reasons for your answer.
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(a) Consider a scalar wave ψi(r) incident upon an inhomogeneity V (r), with known
space-dependant refractive index n(r) = 1 + nδ(r) and embedded in free space.

Express the scattered field ψs(r) as an infinite series using the Born approximation.

Comment on the physical significance of the successive terms in the series, and give at
least one condition for the validity of the first Born approximation.

(b) Consider now the inverse problem of finding the unknown refractive index n(r)
of an extended, finite inhomogeneity embedded in free space, given a known incident field
ψi(r) and a known, measured scattered field ψs(r).

Write a solution of this inverse problem in the first Born approximation, using a formal
representation with operators. This problem is ill-posed. State how it can be regularised
using Tikhonov reguarisation.

(c) Given a well-posed direct problem Ax = y, where A is a bounded operator from
a normed space X into a normed space Y , A : X 7→ Y , and y is the unknown, the inverse
problem of finding x given A and y can be recast into finding x that minimises ‖ Ax−y ‖2

and is equivalent to solving
x = (A∗A)−1A∗y , (1)

where A∗ : Y 7→ X is the adjoint of A. Related to A, there exists a ‘singular value
system’ (σi;ui;vi), where σ2

i are the eigenvalues of A∗A, ui are the corresponding set of
orthonormal eigenvectors of A∗A, and vi are the complete set of orthonormal eigenvectors
of AA∗, so the following relations hold:

Aui = σi vi

A∗vi = σi ui

Ax =
∑

i σi(x, ui) vi

A∗y =
∑

i σi(y, vi)ui

A∗Aui = σ2

i ui .

Here (a, b) denotes the inner product, and note that if there are infinitely many singular
values then the sums above are infinite and limi→∞ σi = 0 .

(i) By using the properties above, or otherwise, show that the inverse problem (1)
is ill-posed and, assuming the known measured field yδ is given with a small error δ > 0
in the direction of an eigenvector vj : yδ = y + δvj (so ‖ yδ − y ‖= δ ), relate to δ the
error ‖ xδ − x ‖ derived by using yδ in (1).

(ii) Using Tikhonov regularisation the problem (1) can be made well posed. Show
this for the case where we can use the following approximate formula for the inverse of
the sum of operators (αI +AA∗), where I is the identity:

(αI +AA∗)−1 = α−1
I − α−2A(I − α−1A∗A)A∗ .
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