MATHEMATICAL TRIPOS Part III

Friday, 4 June, 2010 1:30 pm to 4:30 pm

PAPER 7

ATIYAH SINGER INDEX THEOREM

Attempt question **ONE** and no more than **TWO** other questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

Write an essay outlining the supersymmetric proof of the Atiyah–Singer index theorem for twisted Dirac operators on compact spin manifolds.

$\mathbf{2}$

(a) Prove that $H_s(\mathbb{T}^n) \subset C(\mathbb{T}^n)$ for s > n/2.

(b) Prove the double commutant theorem for *-algebras on a finite-dimensional inner product space.

(c) Let $f: (a,b) \to M_n(\mathbb{R})$ be a differentiable function. Establish a formula for $\frac{d}{dt} e^{f(t)}$ in terms of df/dt.

(d) If ∇_X is the Riemannian connection on forms on a compact Riemannian manifold, prove that the exterior derivative is given by $d = \sum_i e(\omega_i) \nabla_{X_i}$ where (X_i) is locally a basis of vector fields and (ω_i) is the dual basis of 1-forms.

3

(a) Prove that a bounded operator on a Hilbert space is Fredholm of index 0 if and only if it is the sum of an invertible operator and a compact operator.

(b) Let V be a finite-dimensional real inner product space with orthonormal basis (e_i) . Let $C : V \to M_n(\mathbb{C})$ be a real linear map such that $C(v)^* = C(v)$ and C(a) C(b) + C(b) C(a) = 2(a, b)I for $a, b \in V$. If T is a skew-adjoint operator on V, prove that $\pi(T) = \frac{1}{4} \sum C(Te_i) C(e_i)$ satisfies $\pi(T)^* = -\pi(T)$ and $[\pi(T), C(v)] = C(Tv)$ for all $v \in V$.

(c) Let M be compact manifold and $p \in C^{\infty}(X, M_n(\mathbb{C}))$ a self-adjoint projection. Prove that pdp = dp(1-p). Deduce that, if $\omega = p(dp)^2$, then tr ω^k and det $f(\omega)$ are closed if f(t) is a polynomial with f(0) = 1.

(d) Let D be the Dirac operator acting on a Clifford bundle $E = E_+ \oplus E_-$ over a compact Riemannian manifold. Let $D_{\pm} = D|_{E_{\pm}}$. Assuming any spectral properties that you may require, prove that

ind $D_+ = \operatorname{Tr}(e^{D_- D_+ t}) - \operatorname{Tr}(e^{D_+ D_- t}).$

UNIVERSITY OF

 $\mathbf{4}$

(a) Let $L = \Delta + V(x)$ on $T = \mathbb{T}^n$ where $\Delta = -\sum \partial_{x_i}^2$ and $V \in C^{\infty}(T)$. Suppose that Lf = u with $f \in H_{-\infty}(T)$ and $u \in C^{\infty}(T)$. Prove that f lies in $C^{\infty}(T)$.

(b) Let \mathcal{F} be the space of holomorphic functions f on \mathbb{C} such that

$$\pi^{-1} \int |f(z)|^2 e^{-|z|^2} \, dx \, dy \, < \, \infty$$

with inner product

$$(f,g) = \pi^{-1} \int f(z) \overline{g(z)} e^{-|z|^2} dx dy .$$

Prove that \mathcal{F} is a Hilbert space with orthonormal basis $e_n(z) = z^n / \sqrt{n!}$ $(n \ge 0)$.

(c) Define the Hermite functions $H_n(x)$. Prove that they are eigenfunctions of the harmonic oscillator $-d^2/dx^2 + x^2$. Show that

$$\sum_{n \ge 0} H_n(x) e_n(z) = \pi^{-1/4} \exp(-x^2/2 + 2xz/\sqrt{2} - z^2/2)$$

and hence or otherwise deduce that for $t \in (0, 1)$

$$\sum_{n \ge 0} t^n H_n(x) H_n(y) = \frac{1}{\sqrt{\pi(1-t^2)}} \exp \frac{4xyt - (1+t^2)(x^2+y^2)}{2(1-t^2)}.$$

(d) State and prove the Hodge theorem for the Laplacian acting on forms on a compact oriented Riemannian manifold. [You may assume any properties of Sobolev spaces that you require.]

UNIVERSITY OF

 $\mathbf{5}$

(a) State and prove Gauss' lemma.

(b) Let $g_{ij}(x)$ be a smooth metric on the ball $B = \{x \in \mathbb{R}^n : ||x|| < r\}$ in normal coordinates. Let $g(x)^{-1} = (g^{ij}(x))$ and let $L = -\sum_{ij} \partial_{x_j} g^{ij} \partial_{x_i}$. Prove that there is a unique formal power series in t, $G(x,t) = 1 + \sum_{n \ge 1} B_n(x)t^n$, with B_n smooth, such that

4

$$F(x,t) = (4\pi t)^{-n/2} e^{-\|x\|^2/4t} G(x,t)$$

satisfies $\partial_t F + LF = 0$.

(c) Define the Laplacian Δ acting on functions on an *n*-dimensional compact Riemannian manifold M. Assuming any facts about Sobolev spaces that you may require, prove that the eigenvalues $0 = \lambda_0 \leq \lambda_1 \leq \cdots$ of Δ satisfy $\lambda_k \geq Ak^{2/n}$ for some constant A > 0.

(d) Show that if Δ is the Laplacian acting on functions on a compact Riemannian manifold M, then $e^{-t\Delta}$ (t > 0) is a trace-class operator on $L^2(M)$ given by a smooth kernel $K_t(x, y)$. Establish a formula for $\operatorname{Tr} e^{-\Delta t}$ in terms of $K_t(x, y)$.

END OF PAPER