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Consider a rod of length L, Young’s modulus E, mass per unit length λ, and an
elliptical cross-section whose principal components of the moment of inertia tensor are
I2 < I1 so it is easier to bend in one direction than the other. If it is held vertically,
clamped at the bottom end (z = 0), show that the equation governing small amplitude
deflections X(z) (in the easy direction) from the vertical under the action of gravity is

I2EXzzzz − (TXz)z = 0 ,

where T (z) is the internal tension, which you should find. If the upper end is free,
write down the complete set of boundary conditions on X(z). Show that the function
u(z) = Xz(z) admits a similarity solution of the form

u = η1/3F (η)

where

η =
2

3

[

λg (L − z)3 /EI2

]

1/2

.

Noting that the differential equation for Bessel functions Jν has the form

x2 y
′′

+ xy
′

+ (x2
− ν2)y = 0 ,

show that F = a J
−1/3 + b J1/3 , and find the associated boundary conditions on the

function u, using the asymptotic form Jν(x) ∼ xν in the limit x → 0 . Find the critical
condition for the rod to buckle under its own weight.

2

Consider an elastic filament in two dimensions that has an intrinsic curvature κ0(s),
overall length L and projected length L along the x-axis, from which it deviates by the
small amplitude function ζ(x). If it subjected to a force F of extension along x, find
the appropriate quadratic energy functional for the filament. From the Euler-Lagrange
equation, relate the Fourier transforms of ζ and κ0 and thereby deduce the relationship
between F and the length deficit L−L. Specialize to the case of large F and express your
result in a form appropriate to measurements on an ensemble of filaments, each having a
realization of the function κ0(s).

Contrast the force-extension behaviour of the above randomly curved polymer with
that of a freely jointed chain composed of N segments of length b, subject to an extensional
force F . You should derive the exact force-displacement relationship and then deduce the
limiting form at high extension.
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An activator-inhibitor reaction diffusion system in dimensionless form is given by

ut = uxx +
u2

v
− bu

vt = dvxx + u2
− v

where b and d are positive constants. Determine the positive steady states and show, by an
examination of the eigenvalues in a linear stability analysis of the diffusionless situation,
that the reaction kinetics cannot exhibit oscillatory solutions if b < 1 .

Determine the conditions for the steady state to be driven unstable by diffusion.
Show that the parameter domain for diffusion-driven instability is given by 0 < b < 1 ,
db > 3 + 2

√

2 and sketch the (b, d) parameter space in which diffusion-driven instability
occurs. Further, show that at the bifurcation to such an instability the critical wave
number kc is given by k2

c
= (1 +

√

2)/d .
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