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A dense fluid of density p and viscosity p migrates along the lower boundary of a
porous medium of permeability k, porosity ¢ originally filled with fluid of density ps. The
fluid migrates as a two dimensional current from a uniform line source. If the layer of
original fluid in the porous medium is deep show that the current dynamics are described
by the equation

R T
where A = k(p — p2)g/op, x is the distance along the boundary in the direction of the
current and h is the depth of the fluid. You may use the approximation of a long thin

Oh _ 0 [hah}

current.

Derive a solution in the case of a finite release of fluid of volume V' per unit distance
in the cross-flow direction.

If the fluid slowly drains through the boundary of the domain at a rate ¢I'h per

unit area, show that the governing equation has the new form

Oh 0 b Oh
ot Ox ox

S —]—Fh.

Using a suitable transform of time, derive a solution for the motion of an initial
volume of fluid V as it spreads and drains.

Interpret this solution.
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A room is heated from below with uniform heat load ) and has a ventilation opening
in the floor and the ceiling each of area A, and a vertical distance H apart. Show that in
the absence of wind effects, the ventilation flow rate is given by (approximately)

1/3
V = cA2/3 gHQ /
2pCT. ’

where c is a loss coefficient for the openings and T; is the external temperature, with ¢
the acceleration of gravity and p and C), are the density and the specific heat capacity of
the air within the room.

If the room is ventilating in steady state, and the heating load is then reduced to
the value A@, show that a transient two layer stratification becomes established, in which
the depth h of the lower layer satisfies an equation of the form

d
pCpA, 7 [WAT — ATy)l = —pC, VAT + A\Q, (%)
where AT = (T — T) is the temperature contrast with the exterior and ATy = (Tp — 1)
is the initial temperature contrast with the exterior, and in this expression V is the
ventilation rate in the room for which you should give an expression, and A, is the cross-
sectional area of the room.

Show that with suitable scaling, the equation (*) can be written in the dimensionless

form p
o V1i—x— A,
ds
where
_h,_AT
YT H ATy |

and s is the scaled time.

Using the expression for the ventilation rate V, show that the new lower layer
eventually fills the depth of the room, h = H. Derive the equation for the temperature
evolution of the room once the front has left the room and find the final equilibrium
temperature of the room.
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Consider a statistically steady, two-dimensional incompressible flow, where z is the

streamwise direction, and y is the vertical direction. Decompose the velocity u = (u,v) into
a time-averaged mean U = (U(x,y), V(x,y)) and a perturbation & = (4(z,y,t),0(x,y,t)).

(a)

Show that
0 0
%U—Fa—yv =0,
0 0 1 0 0? 0 — 0 = 0?
_ _ - __ _ 9 — U - — 30— — {2 _
U@xU+V8yU p@xp+V8yQU 8yuv 895“ +V8x2U’

where p is the density, p is the time-averaged pressure, and v is the kinematic
viscosity.

As an example, consider the flow associated with a jet issuing from a thin slot,
centred at (0,0), into quiescent fluid. If the flow is at sufficiently high speed, present
scaling arguments to justify the reduction of the streamwise momentum equation
to

0 0 0 — 0 2 2
- _ —_ - — = — _— 1
UggUtV g, U= —5,@ = —se) 5 [z (0U/8y) ] ) (1)

where [ is a “mixing length” which you should define carefully.

Present a physical argument why [ = C4|y| is an appropriate assumption for the
mixing length, for C a constant.

Show that equation (1) implies constant (streamwise) specific momentum flux per
unit width My, i.e.

D gy = o / T0%dy) =0

dz 0 dz \J v =

By considering a streamfunction ¢, show that there exists a similarity solution for
the turbulent plane jet with

b = My 2 P f(yfx) = My? 22 f(n).

Define the edges of the jet as the (constant) values of n = +mn,, = +y,,/x where
|0U /0y| is maximum, and U = 0. Hence, derive the two equations which must be
satisfied by f to be consistent with equations (1) and (2).

Show that the eddy viscosity vr(x,y) in the jet increases like /2 with downstream
distance, and is maximum at the edge of the jet y = +y,, (under the assumptions
above). Hence show that an “effective” Reynolds number U(x,0)y,/vr(z, £yw)
does not depend on downstream distance.
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Consider a cylindrical tank, of depth H and radius R. Define the upper surface
as z = 0, with z increasing downwards. Initially there is a layer of fluid of density p,,(0)
between 0 < z < h(0), and a layer of fluid of density p; > p,(0) between h < z < H .
The lid of the tank is driven at a steady rotation rate 2. The induced flow is such
that the upper layer deepens with time-dependent depth h(t), but remains well-mixed,
with uniform density p,(t) > p.(0), while the lower layer remains stationary. The small
interfacial depth d; over which the density varies substantially between the two layers
is close to constant with time. For some drag coefficient cp, the interfacial stress is
T=c¢p plu% , where uy is a characteristic (radial) velocity in the upper layer in the vicinity
of the interface. Always assume that the rate of increase of potential energy is proportional
to the rate of work done on the upper layer by the lid, with constant of proportionality
Cw, and that the Boussinesq approximation is valid.

(a) Show that g(p; — pu)h/p; = ¢’h remains a constant, and hence that the rate of
increase of the potential energy of the system is directly proportional to the rate of
increase of the depth of the upper layer.

(b) Consider model “S”, which is defined by the assumption that the upper layer is
in time-independent and depth-independent solid body rotation (i.e. assume that
ur = QR). Show that the upper layer deepens at a constant rate proportional to
the inverse of the bulk Richardson number Rip = ¢'h/(Q?R?).

(¢) Now consider model “K”, which is defined by the assumption that the total kinetic
energy of the upper layer remains constant as it deepens (while still remaining in
solid body rotation). Show that this implies that u}h = Q?R?h(0)C2 for some
constant C, where uy is the rms velocity of the upper layer. With the further
assumption that u; = Cruy for some constant Cj, show that

h

ok (1+ AQt)?°

for some constant A, which you should determine.

(d) Define the flux Richardson number. By considering the interfacial Richardson
number Ri; = ¢'d; /uI2, discuss briefly the appropriateness of the fundamental
assumption of constant Cyy for model “S” and model “K”. Furthermore, by
considering the energetics of entrainment, show that you expect the actual evolution
of the deepening of the upper layer to be somewhere between the predictions of
model “S” and model “K”.

END OF PAPER
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