MATHEMATICAL TRIPOS Part III

Thursday, 27 May, 2010 $\,$ 9:00 am to 11:00 am $\,$

PAPER 64

REACTION-DIFFUSION EQUATIONS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

On a Hilbert space \mathcal{H} consider the abstract linear problem

$$\frac{d}{dt}u(t) = Lu(t) + f(t), \qquad t \in (0,T], \quad f:[0,T] \mapsto \mathcal{H}(\Omega),$$
$$u(0) = u_0.$$

State assumptions on the operator $L: D(L) \subset \mathcal{H} \mapsto \mathcal{H}$ and on f in order to formulate and prove local existence of a classical solution (Please define).

Sketch the existence proof in a way which makes it clear why the assumption on f is needed.

$\mathbf{2}$

On a bounded, smooth domain $\Omega \subset \mathbb{R}^n, n \in \mathbb{N}$ consider the problem

$\partial_t u = \Delta u + \lambda u - u^3 ,$		$x\in\Omega,\ t>0,$
u = 0,		$x\in\partial\Omega,\ t>0,$
$m \leq u(x,0) \leq M, u$	$u(x,0) \in \mathcal{H}_{\alpha}, \ \alpha > 0$	$x \in \Omega$.

Suppose the existence of a local classical solution u(t), which satisfies moreover $\frac{du}{dt} \in C((0, t_0], \mathcal{H}_{\delta})$ with $\frac{n}{4} < \delta$ and $u(t) \in C([0, t_0], \mathcal{H}_{\alpha})$.

Show that this solution satisfies indeed (at least) $u(t) \in C^1((0, t_0], C^2(\overline{\Omega}))$. Moreover, show that this solution is uniformly bounded and thus can be extended globally.

3

For a constant k > 0 consider the equation

$$\partial_t u = \partial_{xx} u + u(k-u), \qquad x \in \mathbb{R}, \ t > 0.$$

Show the existence of non-negative travelling waves u(x,t) = w(x-ct) for $c \ge 0$ via phase plane analysis.

Part III, Paper 64

UNIVERSITY OF

 $\mathbf{4}$

Consider a travelling wave solution $w_c(z)$, z = x - ct of the equation

$$\partial_t u = \partial_{xx} u + u(k-u), \qquad x \in \mathbb{R}, \ t > 0,$$

with k > 0 and for $c \ge c_*$ where $c_* > 0$ is given.

What sort of stability of travelling waves can be expected? Which equation is (usually) the first one to consider? Use a theorem of the lecture in order to show stability of the essential spectrum under perturbations in the weighted spaces

$$L^{2}_{\gamma} = \{ u \in L^{2}(\mathbb{R}) : \|u\|^{2}_{2,\gamma} = \int_{\mathbb{R}} |u|^{2} e^{2\gamma x} dx < \infty \},\$$

for $\gamma > 0$ where γ is to be determined.

END OF PAPER