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SECTION I

1

Given the ODE system y′ = f(y), where f is smoothly differentiable, we consider
the two-step method

yn+2 −
6

7
hf(yn+2) + 2

7
h2 ∂f(yn+2)

∂y
f(yn+2) = 8

7
yn+1 −

1

7
yn.

1. Determine the order of this method.

2. Is it A-stable?

2

1. Given a Hilbert space H and a linear operator L : H → H , what is meant by L
being positive definite?

2. Prove that if L is positive definite then Lu = f is the Euler–Lagrange equation of
the variational problem I(v) = 〈Lv, v〉 − 2〈f, v〉 .

3. Suppose that H consists of the closure of twice smoothly-differentiable functions
that satisfy the zero boundary conditions u(±1) = u′(±1) = 0 and is equipped
with the standard L2 inner product. In addition, p, q ∈ H are given, such that
p(x) > 0, q(x) > 0, x ∈ (−1, 1). Prove that the operator

L[f ] = (pu′′)′′ + qu

is positive definite.
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3

Consider the Cauchy problem for the two-dimensional advection equation

∂u

∂t
=

∂u

∂x
+

∂u

∂y
, u = u(x, y, t) , (x, y) ∈ R

2 , t > 0

and the semi-discretized scheme

u′

m,k =
1

∆x
(− 3

2
um,k −

1

2
um−1,k + 1

2
um+1,k + 2um,k+1 −

1

2
um,k+2) , m, k ∈ Z ,

where um,k ≈ u(m∆x, k∆x, t).

1. What is the order of the method?

2. Is the method stable?

4

Let distinct c1, c2, . . . , cs ∈ [0, 1] be given.

1. Define a collocation method with the nodes c1, . . . , cs.

2. Prove that such a method can be reformulated as a Runge–Kutta method.

3. State a theorem on the order of a collocation method.

4. Prove that the Runge–Kutta method with the Butcher tableau

1/3 5/12 −1/12

1 3/4 3/4

3/4 1/4

is equivalent to collocation and determine its order.
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Let a ∈ C1([0, 1]2) and assume that a(x, y) > 0 for all (x, y) ∈ [0, 1]2. We consider
the diffusion equation with variable diffusion coefficient,

∂u

∂t
= ∇

⊤(a∇u) , (x, y) ∈ [0, 1]2 , t > 0 ,

with initial conditions at t = 0 and zero Dirichlet boundary conditions.

1. The equation is computed by means of the semi-discretized set of ODEs

u′

m,k =
1

(∆x)2
[

am−
1

2
, k um−1, k + am + 1

2
, kum+1, k + am, k− 1

2

um, k−1

+ am, k+ 1

2

um, k+1

− (am−
1

2
, k + am + 1

2
, k + am, k− 1

2

+ am, k+ 1

2

)um, k

]

,

where um,k ≈ u(m∆x, k∆x, t) and k, l = 1, . . . , N − 1 , where N∆x = 1 .

Prove that the method is stable.

2. We rewrite the above semidiscretized ODEs in the form

u′

m,k =
1

(∆x)2
[

am−
1

2
, k um−1, k − (am−

1

2
, k + am + 1

2
, k)um, k

+ am+ 1

2
, k um+1, k

]

+
1

(∆x)2
[

am, k −
1

2

um, k−1 − (am, k−
1

2

+ am, k + 1

2

)um, k

+ am, k + 1

2

um, k+1

]

.

Written in a matrix form, this reads

u
′ = (A + B)u ,

where A and B are appropriate N2
× N2 matrices. Prove that the splitting

u
n+1 = e(∆t)A e(∆t)B

u
n ,

where un
m,k ≈ um,k(n∆t), approximates the semidiscretized ODEs with an error of

O(∆t).

3. We approximate each exponential by the [1/1] Padé approximation (in other words,
use the split form of Crank–Nicolson). Prove that the ensuing full discretization is
stable for all Courant numbers µ = ∆t/(∆x)2 .
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SECTION II

6

Write an essay on A-stability of methods for ordinary differential equations.

7

Write an essay on stability analysis of numerical methods for partial differential

equations of evolution using eigenvalue analysis.

END OF PAPER
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