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(a) For f ∈ C[0, 1], write down the definition of the Bernstein polynomial Bn(f) of degree
n, and prove that ‖Bn(f)‖∞ 6 ‖f‖∞ .

(b) Let fn0 ≡ 1 and

fnm(x) := x

(

x −
1

n

) (

x −
2

n

)

· · ·

(

x −
m − 1

n

)

, 1 6 m 6 n .

Show that Bn(fnm, x) = fnm(1)xm .

(c) Using (a)-(b) prove that Bn(em) → em uniformly for any monomial em(x) = xm.

(d) Quoting any appropriate theorem, derive that Bn(f) → f as n → ∞ for any continuous
f ∈ C[0, 1].

2

(a) Let σn be the Fejer operator, i.e., for a 2π-periodic function f ∈ C(T),

σn(f, x) =

∫
π

−π

f(x − t)Fn(t) dt , Fn(t) :=
1

π

1

2n

sin2 nt

2

sin2 t

2

,

∫
π

−π

Fn(t) dt = 1 .

Prove the estimate
‖σn(f) − f‖∞ 6 c ω2(f, 1√

n
) ,

where ω2(f, δ) is the second modulus of smoothness of f . Hence prove that if f ′′ is
continuous, then

‖σn(f) − f‖ = O ( 1

n
) .

(You should quote the relevant properties of the modulus ω2(f, t) when using.)

(b) By considering f(x) = cos kx show that we cannot have a small-o estimate

‖σn(f) − f‖ = o ( 1

n
)

for all f ∈ C2(T).
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Let Tn be the Chebyshev polynomial of degree n:

Tn(x) = cos n arccos x , x ∈ [−1, 1] .

(a) Prove that

1 − Tn(x)2 =
1 − x2

n2
T ′

n
(x)2 .

and from first principles derive that if q is a polynomial of degree n − 1 that satisfies

|q(x)| 6
n√

1 − x2
at the n zeros of Tn ,

then
|q(x)| 6 |T ′

n
(x)| , |x| > cos

π

2n
.

(b) Using (a) and the Bernstein inequality

|p(x)| 6 1 ⇒ |p′(x)| 6
n√

1 − x2

derive the Markov inequality

|p(x)| 6 1 ⇒ |p′(x)| 6 T ′

n
(1) .

4

For a knot sequence (ti)
n+k
i=1

⊂ [a, b] with distinct knots, let

Mi(t) := k [ti, . . . , ti+k](· − t)k−1
+ , Ni(t) := (ti+k − ti)[ti, . . . , ti+k](· − t)k−1

+

be the sequences of L1 and L∞-normalized B-splines, respectively.

(a) Prove that Mi are piecewise-polynomial functions of degree k−1 and global smoothness
Ck−2, with knots (ti, . . . , ti+k) and with the finite support [ti, ti+k].

(b) Using the Leibnitz rule for the divided differences, or otherwise, derive the recurrence
formula for B-splines:

Ni,k(t) =
t − ti

ti+k−1 − ti
Ni, k−1 +

ti+k − t

ti+k − ti+1

Ni+1, k−1 ,

where Ni,m is the L∞-normalized B-spline of order m with support [ti, ti+m].
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(1) Let Sk(∆) be the space of splines of degree k − 1 spanned by the B-splines
(Nj)

n
j=1 on a knot sequence ∆ = (tj)

n+k
j=1

such that tj < tj+k . Let x = (xi)
n
i=1 be

interpolation points obeying the conditions

Ni(xi) > 0 ,

and let Px : C[a, b] → Sk(∆) be the map which associates with any f ∈ C[a, b] the spline
Px(f) from Sk which interpolates f at (xi). Prove that

1

dk

‖A−1
x ‖ℓ∞ 6 ‖Px‖L∞

6 ‖A−1
x ‖ℓ∞

where Ax is the matrix (Nj(xi))
n
i,j=1 , and dk is the constant such that

1

dk

‖a‖ℓ∞ 6 ‖
n∑

i=1

ai Ni‖L∞
∀ a ∈ R

n .

(2) Consider the case of quadratic interpolating splines on the uniform knot-sequence
(t1, t2, . . . , tn+3) = (1, 2, . . . , n + 3) with the interpolating points

xi = ti+2 = i + 2 , i = 1, . . . , n .

Prove that ‖Px‖L∞
= O(n), hence Px is not bounded uniformly in n. (You may use the

equality d3 = 3).
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(a) Define a multiresolution analysis of L2(R) with a generator φ and explain how
it is related to existence of an orthonormal wavelet ψ.

(b) Prove that the following properties of φ

(1) φ(x) =
∑

n

an φ(2x− n) , (2) {φ(· − n)} is orthonormal.

are equivalent to

(1′) f(2t) = m(t)f(t) , (2′)
∑

|f(t+ 2πk)|2 ≡ 1 a.e.

where f is the Fourier transform of φ, i.e., f(t) =
∫

R
φ(x) e−ixt dx .

(c) Verify that conditions (1’)-(2’) are fulfilled for the function f defined by the
following rule:

1. f(t) = 1 , |t| <
2

3
π ,

2. f(t) = 0 , |t| >
4

3
π ,

3. f2(t) + f2(t− 2π) = 1 , t ∈

[

2

3
π ,

4

3
π

]

.
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