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SECTION I

1

Prove the geometric Hahn-Banach theorem in the following form. Suppose that A

is a non-empty radially open convex subset of a real vector space V , and that U is a linear
subspace of V disjoint from A. Show that there exists a hyperplane H such that U ⊆ H

and H ∩ A = ∅.

Suppose that f is a non-zero convex real-valued function on a real vector space V

with f(0) = 0. By considering the set

A = {(x, β) ∈ V × R : f(x) < β}

or otherwise, show that there exists a linear functional l on V such that l(x) 6 f(x) for
all x ∈ V .

Now suppose that (V, ‖.‖) is a normed space and that f is continuous on V . Show
that the null-space of l is closed. Explain why this implies that l is continuous.

2

Which of the following statements are true, and which false? If a statement is true,
prove it, and if not, provide a counterexample.

(i) If a separable compact Hausdorff topological space (X, τ) has a dense subset Y which
is metrizable in the subspace topology then (X, τ) is metrizable.

(ii) If the weak topology and the norm topology are the same on the unit ball B of a
normed space (E, ‖.‖) then E is finite-dimensional.

(iii) If (E, ‖.‖) is a separable normed space, then its unit ball B is metrizable in the weak
topology.

(iv) If (E, ‖.‖) is a separable normed space, then the unit ball B′ of its dual E′ is metrizable
in the weak* topology.

3

Prove the existence of Haar measure on a compact Hausdorff group G.

[You may assume Hall’s marriage theorem, but should establish properties of mini-

mal left-V nets that you need.]
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SECTION II

4

What is a uniform algebra A on a compact Hausdorff space K? Explain why there
is a homeomorphism δ of K onto a closed subset j(K) of the carrier space ΦA.

A uniform algebra A is said to be natural if j(K) = ΦA. Show that the following
are equivalent:

(i) A is natural;

(ii) If f1, . . . , fn ∈ A and ∩n
j=1

{x ∈ K : fj(x) = 0} = ∅ then there exist g1, . . . , gn

such that f1g1 + · · · + fngn = 1 .

[Hint: Consider the ideal generated by f1, . . . , fn.]

Use this result to show that C(K) is natural.

Show that the disc algebra A(D̄) is natural.

Let C = {f ∈ C(D̄) : there exists g ∈ A(D̄) such that f(z) = g(z) for |z| = 1} .
Determine the carrier space ΦC of C.

5

What is the spectrum σ(a) of an element a of a unital Banach algebra A? State the
relation between σ(ba) and σ(ab). Give an example where σ(ba) 6= σ(ab).

What is a positive element of a unital C∗-algebra A? Explain, with examples, how
the Gelfand functional calculus can be used to obtain properties of positive elements.

Show that if a and b are positive then a + b is positive.

Show that if a ∈ A then a∗a is positive.

Show that if a is positive and c ∈ A then c∗ac is positive.

As usual, write a 6 b if b − a is positive. Suppose that 1 6 a 6 b .

(i) Show that a and b are invertible, and that 0 < b−1 6 a−1 6 1 .

(ii) Show that σ(ab) ⊆ R
+.

(iii) Give an example where b2 − a2 is not positive.
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