MATHEMATICAL TRIPOS Part III

Thursday, 27 May, 2010 1:30 pm to 4:30 pm

PAPER 6

INTRODUCTION TO FUNCTIONAL ANALYSIS

Attempt no more than **THREE** questions, and not more than **TWO** from either Section.

> There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

SECTION I

1

Prove the geometric Hahn-Banach theorem in the following form. Suppose that A is a non-empty radially open convex subset of a real vector space V, and that U is a linear subspace of V disjoint from A. Show that there exists a hyperplane H such that $U \subseteq H$ and $H \cap A = \emptyset$.

Suppose that f is a non-zero convex real-valued function on a real vector space V with f(0) = 0. By considering the set

$$A = \{(x,\beta) \in V \times \mathbf{R} : f(x) < \beta\}$$

or otherwise, show that there exists a linear functional l on V such that $l(x) \leq f(x)$ for all $x \in V$.

Now suppose that $(V, \|.\|)$ is a normed space and that f is continuous on V. Show that the null-space of l is closed. Explain why this implies that l is continuous.

$\mathbf{2}$

Which of the following statements are true, and which false? If a statement is true, prove it, and if not, provide a counterexample.

(i) If a separable compact Hausdorff topological space (X, τ) has a dense subset Y which is metrizable in the subspace topology then (X, τ) is metrizable.

(ii) If the weak topology and the norm topology are the same on the unit ball B of a normed space $(E, \|.\|)$ then E is finite-dimensional.

(iii) If $(E, \|.\|)$ is a separable normed space, then its unit ball B is metrizable in the weak topology.

(iv) If $(E, \|.\|)$ is a separable normed space, then the unit ball B' of its dual E' is metrizable in the weak^{*} topology.

3

Prove the existence of Haar measure on a compact Hausdorff group G.

[You may assume Hall's marriage theorem, but should establish properties of minimal left-V nets that you need.]

SECTION II

 $\mathbf{4}$

What is a uniform algebra A on a compact Hausdorff space K? Explain why there is a homeomorphism δ of K onto a closed subset j(K) of the carrier space Φ_A .

A uniform algebra A is said to be *natural* if $j(K) = \Phi_A$. Show that the following are equivalent:

(i) A is natural;

(ii) If $f_1, \ldots, f_n \in A$ and $\bigcap_{j=1}^n \{x \in K : f_j(x) = 0\} = \emptyset$ then there exist g_1, \ldots, g_n such that $f_1g_1 + \cdots + f_ng_n = 1$.

[*Hint: Consider the ideal generated by* f_1, \ldots, f_n .]

Use this result to show that C(K) is natural.

Show that the disc algebra $A(\bar{\mathbf{D}})$ is natural.

Let $C = \{f \in C(\overline{\mathbf{D}}) : \text{ there exists } g \in A(\overline{\mathbf{D}}) \text{ such that } f(z) = g(z) \text{ for } |z| = 1\}.$ Determine the carrier space Φ_C of C.

$\mathbf{5}$

What is the spectrum $\sigma(a)$ of an element *a* of a unital Banach algebra *A*? State the relation between $\sigma(ba)$ and $\sigma(ab)$. Give an example where $\sigma(ba) \neq \sigma(ab)$.

What is a *positive* element of a unital C^* -algebra A? Explain, with examples, how the Gelfand functional calculus can be used to obtain properties of positive elements.

Show that if a and b are positive then a + b is positive.

Show that if $a \in A$ then a^*a is positive.

Show that if a is positive and $c \in A$ then c^*ac is positive.

As usual, write $a \leq b$ if b - a is positive. Suppose that $1 \leq a \leq b$.

(i) Show that a and b are invertible, and that $\ 0 < b^{-1} \leqslant a^{-1} \leqslant 1 \, .$

(ii) Show that $\sigma(ab) \subseteq \mathbf{R}^+$.

(iii) Give an example where $b^2 - a^2$ is not positive.

4

END OF PAPER