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(i) A self-gravitating stellar system has a power-law density profile

ρ = ρ0

(r0
r

)α
,

where ρ0 and r0 are the length and density scales, while α is a constant satisfying
1 < α < 3 . Show that the gravitational potential is

φ =
4πGρ0 r

2

0

(3 − α)(2 − α)

(

r

r0

)2−α

.

What does this formula become when α = 2?

The Jeans equation for an isotropic spherical system reads

d

dr

(

ρ〈v 2

r 〉
)

= −ρ dφ
dr

.

Show that radial velocity dispersion 〈v2
r 〉 is

〈v 2

r 〉 =
2πGρ0 r

2

0

(3 − α)(α − 1)

(

r

r0

)2−α

.

(ii) Suppose a stellar system has the phase space distribution function

f(E) = F0E
−n− 3/2 ,

where F0 is a constant, E is the energy and the potential φ is zero at the centre of the
system. Show that the density ρ satisfies

ρ = ρn φ
−n ,

where ρn is a constant. What values of n are permitted?

Show that the dimensionless radius s = r/b and the potential ψ = φ/φ0 satisfy

1

s2
d

ds

(

s2
dψ

ds

)

= 3ψ−n ,

where φ0 is arbitrary and b = (4

3
πGφ−n− 1

0
ρn)−1/2 .

Hence, show that the equations admit power-law solutions

ρ ∝ r−α , for 0 < α 6 2 .

Why does this method not find the power-law solutions with 2 < α < 3 found in part (i)?
Why does the method in part (i) not find the power-law solutions with 0 < α 6 1 ?

[Hint: You may assume without proof the standard integral

4

∫ π/2

0

sin2 θ cos 2n−1 θ dθ =

√
π Γ(n)

Γ(n+ 3/2)
valid for n > 0 . ]
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(i) A self-gravitating ideal gas with density ρ(r) and potential φ(r) is contained
within a spherical box of radius rb. Suppose that the gas is thermally conducting so that
the equilibrium state is isothermal. Show that the total energy E of the gas is

E =
3

2
N kBT + 2π

∫ rb

0

r2ρ(r)φ(r) dr ,

where kB is Boltzmann’s constant, T is the temperature and N the number of gas
molecules.

Write down the distribution function of the gas, and derive a differential equation for the
density ρ.

Suppose the container is placed in contact with a heat bath initially maintained at a
constant, very high temperature. Draw a graph showing the behaviour of the temperature
and energy of the gas as the temperature of the heat bath is gradually reduced.

Mark on the graph the point at which the heat capacity first becomes negative, and the
point corresponding to the onset of the gravothermal catastrophe.

(ii) Consider a rigid sphere of radius rmax. Inside this sphere and concentric with it
is a second sphere whose radius can vary between rmin and rmax which contains an ideal
gas. The space between the two spheres is empty. The inner sphere has a potential −b/r,
which tends to make it collapse, but the collapse is opposed by the pressure P of the gas.
Show that the equilibrium radius of the sphere is

r =

(

b

4πP

)1/4

, rmin < r < rmax .

If the gas is ideal and monatomic, show that

r =
b

2 aT
, rmin < r < rmax ,

where a = 3NkB/2 .

Hence, show that that the kinetic energy of the gas is aT and that the energy of the system
is E where

E = aT −

b

r
,

and demonstrate that the heat capacity is negative.

Interpret your result physically.
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Let (r, θ, φ) be spherical polar coordinates and consider the gravitational potential

φ(r, θ) = v 2

0 log
(

r + r | cos θ|
)

,

where v0 is a constant. Show that φ satisfies Laplace’s equation in the half-spaces z > 0
and z < 0 .

Use Gauss’s Theorem to show that there is an infinitesimally thin disk (the Mestel

disk) occupying the plane z = 0 , and find its surface density Σ(r).

Show that a star in the Mestel disk conserves its energy E and its angular momentum
component Lz. Hence, explain why the phase-space distribution function F of the Mestel
disk depends on E and Lz only.

By integrating over velocity space, show that the Mestel disk has a one-parameter
family of distribution functions of form

F (E,Lz) = F |Lz|
q exp

(

−E/σ 2

0

)

,

for suitable choices of the constants F, q and σ0.

Find the radial and tangential velocity dispersion in the disk. To what do the limits
q → ∞ and q → −1 correspond?

[Hint: You are reminded of the standard integral

∫

∞

−∞

exp(−αv2) dv =

√

π

α
,

as well as the definition of the Gamma function as

Γ(q + 1) =

∫

∞

0

xq exp(−x) dx . ]
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(i) Let (x, y, z) be Cartesian coordinates. Suppose the potential in the plane z = 0
of the core of a triaxial galaxy can be approximated by

φ =
1

2
ω2

(

x2 + 4 y2

)

,

where ω is a constant. By introducing canonical momenta px and py and separating the
Hamilton-Jacobi equation, show that the energies

Ex =
1

2

(

p 2

x
+ ω2 x2

)

, Ey =
1

2

(

p 2

y
+ 4ω2 y2

)

,

are integrals of the motion.

By integrating the equations of motion, or otherwise, show that there is an additional
integral J given by

J = 2arctan

(

px

ωx

)

− arctan

(

py

2ωy

)

,

What does this imply about motion in the (x, y) plane?

(ii) Define action-angle coordinates. Write down Hamilton’s equations in action-
angle coordinates.

What is meant by the term adiabatic invariant?

Suppose a star is moving on a bound orbit of energy E0 and angular momentum L0 in the
potential

φ = −

γ0

rn
, 0 < n < 2 ,

where γ0 and n are constants. Determine the change in energy and angular momentum if
γ0 changes slowly and adiabatically to γ1.

Discuss what happens to (a) a star moving on a circular orbit of initial radius r0 and (b)
a star moving on a radial orbit with initial apocentre ra.

END OF PAPER
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