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1

The action for the gravitational field in three spacetime dimensions can be written
as

I =

∫
(Rab

∧ Ec + λEa
∧ Eb

∧ Ec)ǫabc,

where ǫabc is the three dimensional alternating symbol, Ea is an orthonormal basis of 1-
forms, Rab is the curvature 2-form of some connection 1-form ωab and λ is a real constant.

Find the two equations of motion of this theory.

Suppose that the line element is given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dθ2,

where t is a time co-ordinate, r is a radial co-ordinate and θ an angular co-ordinate.
Determine f(r) given that this line element satisfies the equations of motion for this
theory, and f → 1 as r → 0.

2

The action for Yang-Mills theory in four spacetime dimensions is given

I =

∫
tr (∗F ∧ F )

where F is a Lie-algebra valued 2-form field strength constructed from a Lie-algebra valued
1-form potential A.

Find the equations of motion.

Suppose one performs an infinitesimal gauge transformation parametrized by η.
Find the gauge variations δA and δF of A and F respectively.

Show that the action I is gauge invariant, up to possible boundary terms which
should be evaluated if present.

Suppose that one adds to I the term

∫
tr (F ∧ F ).

Show that this term is similarly gauge invariant.

Does the addition of this term to the action affect the equations of motion?
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3

Describe how to calculate the zeta function for the operator −� in a compact space
without boundary and with a positive definite metric gab.

In dimension two, find an expression for ζ(0) in terms of the curvature.

4

A spinor field ψ propagates in a spacetime with metric gab.

Describe how to construct the vierbein from gab and explain how local Lorentz

transformations act on components of the vierbein.

Explain carefully how ψ transforms under local Lorentz transformations.

Find an expression for the covariant derivative ∇aψ of ψ giving a careful justification

for your answer.

Evaluate ∇[a∇b]ψ.
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