MATHEMATICAL TRIPOS Part III

Thursday, 3 June, 2010 $-1:30~\mathrm{pm}$ to $4:30~\mathrm{pm}$

PAPER 55

APPLICATIONS OF DIFFERENTIAL GEOMETRY TO PHYSICS

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

The action for the gravitational field in three spacetime dimensions can be written

as

$$I = \int (R^{ab} \wedge E^c + \lambda E^a \wedge E^b \wedge E^c) \epsilon_{abc}$$

 $\mathbf{2}$

where ϵ_{abc} is the three dimensional alternating symbol, E^a is an orthonormal basis of 1forms, R^{ab} is the curvature 2-form of some connection 1-form ω_{ab} and λ is a real constant.

Find the two equations of motion of this theory.

Suppose that the line element is given by

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)} + r^{2}d\theta^{2},$$

where t is a time co-ordinate, r is a radial co-ordinate and θ an angular co-ordinate. Determine f(r) given that this line element satisfies the equations of motion for this theory, and $f \to 1$ as $r \to 0$.

$\mathbf{2}$

The action for Yang-Mills theory in four spacetime dimensions is given

$$I=\int tr\,(*F\wedge F)$$

where F is a Lie-algebra valued 2-form field strength constructed from a Lie-algebra valued 1-form potential A.

Find the equations of motion.

Suppose one performs an infinitesimal gauge transformation parametrized by η . Find the gauge variations δA and δF of A and F respectively.

Show that the action I is gauge invariant, up to possible boundary terms which should be evaluated if present.

Suppose that one adds to I the term

$$\int tr \, (F \wedge F).$$

Show that this term is similarly gauge invariant.

Does the addition of this term to the action affect the equations of motion?

UNIVERSITY OF

3

Describe how to calculate the zeta function for the operator $-\Box$ in a compact space without boundary and with a positive definite metric g_{ab} .

In dimension two, find an expression for $\zeta(0)$ in terms of the curvature.

 $\mathbf{4}$

A spinor field ψ propagates in a spacetime with metric g_{ab} .

Describe how to construct the vierbein from g_{ab} and explain how local Lorentz transformations act on components of the vierbein.

Explain carefully how ψ transforms under local Lorentz transformations.

Find an expression for the covariant derivative $\nabla_a \psi$ of ψ giving a careful justification for your answer.

Evaluate $\nabla_{[a} \nabla_{b]} \psi$.

END OF PAPER