MATHEMATICAL TRIPOS Part III

Friday, 4 June, 2010 1:30 pm to 4:30 pm

PAPER 54

BLACK HOLES

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

1

(a)(i) Let V^a be a Killing vector field. Prove that

$$\nabla_a \nabla_b V^c = R^c_{bad} V^d.$$

 $\mathbf{2}$

(ii) Let V^a be a Killing vector field in a vacuum spacetime. Show that $F_{ab} = 2\partial_{[a}V_{b]}$ satisfies Maxwell's equations.

(iii) Consider Minkowski spacetime in spherical polar coordinates (t, r, θ, ϕ) . What is the interpretation of the solution F_{ab} for $V = \partial/\partial \phi$? [*Hint: transform* V_a to Cartesian coordinates.]

(iv) What is the interpretation of F_{ab} for $V = \partial/\partial t$ and $V = \partial/\partial \phi$ in the Schwarzschild spacetime (with M > 0)?

(b) The following metric solves Einstein's equation in 3 dimensions with a negative cosmological constant:

$$ds^{2} = -\left(\frac{r^{2}}{\ell^{2}} - M\right)dt^{2} + \frac{dr^{2}}{(r^{2}/\ell^{2} - M)} + r^{2}d\phi^{2},$$

where $\phi \sim \phi + 2\pi$, and ℓ , M are constants with $\ell > 0$.

(i) For M > 0, show that this spacetime can be analytically extended such that the resulting spacetime has a Killing horizon at $r = \ell \sqrt{M}$, where the associated Killing vector field coincides with $\partial/\partial t$ for $r > \ell \sqrt{M}$.

(ii) Determine the surface gravity of this Killing horizon.

(iii) For M < 0, show that the spacetime is nakedly singular unless M takes a certain value.

CAMBRIDGE

 $\mathbf{2}$

The Vaidya spacetime has metric

$$ds^{2} = -\left(1 - \frac{2m(v)}{r}\right)dv^{2} + 2\,dv\,dr + r^{2}\left(d\theta^{2} + \sin^{2}\theta\,d\phi^{2}\right)\,.$$

where m(v) is an arbitrary smooth positive function. It is a solution of Einstein's equation for an energy-momentum tensor with only one non-vanishing component:

$$T_{vv} = \frac{\dot{m}(v)}{4\pi r^2},$$

where a dot denotes a derivative with respect to v.

(a) Show that curves of constant v, θ, ϕ are null geodesics.

(b) What condition(s) must m(v) obey for the dominant energy condition to be satisfied? (*Hint: note that* $-\partial/\partial r$ *is future-directed because it is tangent to ingoing radial null geodesics.*)

(c) Assume that this spacetime contains an event horizon. By spherical symmetry, this must have equation r = r(v). Show that r(v) satisfies

$$2r(v)\dot{r}(v) = r(v) - 2m(v).$$

(d) Let $m(v) = M_0$ for v < 0 and $m(v) = M_1 > M_0$ for $v > v_0$, where M_0 and M_1 are positive constants, with m(v) monotonically increasing for $0 < v < v_0$. Explain briefly, using a Penrose diagram, why $r(v) = 2M_1$ for $v > v_0$. (You may assume standard properties of the Schwarzschild black hole.)

(e) Now assume that $M_1 - M_0$ is small. Write $m(v) = M_0 + \mu(v)$, where $\mu(v)$ is small, with $\mu(v) = 0$ for v < 0 and $\mu(v) = M_1 - M_0$ for $v > v_0$. Write $r(v) = 2M_0 + \rho(v)$, where $\rho(v)$ is small. Working to first order, solve the above equation to determine $\rho(v)$. Hence show that $r(v) \to 2M_0$ as $v \to -\infty$.

(f) Still assuming $M_1 - M_0$ to be small, calculate the total energy of the matter that crosses the horizon. Hence show that the first law of black hole mechanics is satisfied. (*Hint: the energy-momentum tensor is small so one can treat the background as exactly Schwarzschild when calculating the energy that crosses the horizon.*)

UNIVERSITY OF

3

(a) Show that the normal to a null hypersurface is tangent to null geodesics within the surface.

- (b) Define the *expansion*, *shear* and *twist* of a null geodesic congruence.
- (c) Derive Raychaudhuri's equation.

(d) Prove that the expansion, shear and twist of the generators of a Killing horizon must vanish.

 $\mathbf{4}$

Write an essay explaining Hawking's argument that black holes must emit thermal radiation.

END OF PAPER