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(i) The expansion of an isotropic and spatially-homogeneous universe in comoving proper
time, t, is described by the equations (where ȧ denotes da/dt)

ȧ2

a2
=

8πG

3
ρ −

k

a2
+

Λ

3
and

ä

a
= −

4πG

3

(

ρ + 3P
)

+
Λ

3
.

Give a brief physical interpretation of these equations. Use them to show that

ρ̇ + 3
ȧ

a

(

ρ + P
)

= 0 ,

and explain the physical meaning of this equation.

Define the deceleration parameter, q, and the density parameters Ωm and ΩΛ. If the
universe contains only matter with zero pressure and Λ > 0, show that

q =
1

2
Ωm − ΩΛ .

If, today, 30% of the total density of the universe is in the form of matter with zero
pressure and the remainder is in the form of dark energy with an equation of state P = −ρ,
calculate the redshift when the expansion of the universe changes from deceleration to
acceleration.

If the spatial geometry of this universe is Euclidean, show that

ȧ2

a2
= H 2

0

(

Ωm0 a−3 + 1 − Ωm0

)

,

where H0 is the Hubble expansion rate today, Ωm0 the value of the matter density
parameter today, and we normalize a = a0 ≡ 1 today. Defining the time origin by
a(0) = 0 , show that the solution is

a(t) =

(

Ωm0

1 − Ωm0

) 1/3

sinh2/3

(

3

2
H0 t

√

1 − Ωm0

)

.

Interpret the limiting behaviour of this solution as t → 0 and t → ∞. Would you
expect the inclusion of a negative spatial curvature to affect these limiting behaviours?
Explain briefly why this solution provides a good description of the observed expansion of
the universe.

(ii) What condition on the density ρ and pressure P is needed for an inflationary cosmology
to be able to solve the flatness and horizon problems? Give an example of a type of matter
field that could satisfy this requirement and show how the condition for inflation to occur
can be met by this field.

Determine whether the following examples of cosmological scale-factor evolution can
permit phases of inflationary expansion during the early universe over the time interval
t > 0:
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(a) a(t) = ln(Ct), C > 0 constant;

(b) a(t) = tn, with n > 0 constant;

(c) a(t) = exp(Atn), with constants A > 0 and 0 < n 6 1 .
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(i) Describe the sequence of events that leads to the primordial nucleosynthesis of helium-
4 during the radiation-dominated early universe and show how the final abundances of
neutrons and protons, and of helium-4, can be estimated using the cosmological expansion
time,

t =

(

3

32π Gρ

)1/2

= g
−1/2

∗

(

1010 K/T
)2

s ,

and the weak interaction time,

twk =

(

ℏ

G 2

weak
kB T 5

)

=
(

1010 K/T
)5

s ,

at temperature T , where g∗ is the total number of relativistic degrees of freedom present
in bosons and fermions at temperature T and kB is Boltzmann’s constant.

Explain the effect on the abundance of helium-4 produced by each of the following
changes to the standard model you have described:

(a) A reduction in the value of Newton’s gravitation constant, G;

(b) A reduction in the neutron half-life;

(c) A fourth neutrino species with mass of 0.001 eV;

(d) An increase in the measured value of the neutron-proton mass difference;

(e) A small change in the baryon density of the universe;

(f) The presence of a cosmological population of 50 GeV weakly interacting neutral
particles;

(g) A change in the cosmological metric which leads to faster cosmological expansion
rate at a given temperature.

(ii) A relativistic species of hypothetical H particles decouples from the interacting
equilibrium sea of particles in the universe at a temperature TH , which exceeds that
equivalent to the muon rest mass (105 MeV) but is less than the pion mass (135 MeV).
Calculate the ratio of the temperature of the H particles to that of the photons after the
annihilation of muon-antimuon pairs just after the universe cools through 105 MeV. What
happens when the temperature of the universe subsequently drops below 0.59 MeV ?

[Assume that the universe contains three generations of light relativistic neutrinos and
the entropy density in thermal equilibrium at temperature T , density ρ and pressure P is
s = (ρ + P )T−1 .]
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3 Consider linear perturbations to a spatially-flat Robertson-Walker metric:

ds2 = a2(η)
{

(1 + 2ψ)dη2
− 2Bi dx

idη − [(1 − 2φ)δij + 2Eij ] dx
idxj

}

,

where Eij is symmetric and trace-free.

(i) Under a gauge transformation, η̃ = η+T (η, xi) and x̃i = xi +Li(η, xj), explain why
the perturbation to the metric, δgµν , transforms to

δg̃µν = δgµν +

(

∂xα

∂x̃µ

∂xβ

∂x̃ν
− δα

µ δ
β
ν

)

ḡαβ − T ˙̄gµν

at linear order, where ḡµν = a2diag(1,−1,−1,−1) is the background metric and
overdots denote differentiation with respect to x0 ≡ η.

(ii) Noting that
(

∂η/∂η̃ ∂η/∂x̃i

∂xi/∂η̃ ∂xi/∂x̃j

)

=

(

1 − Ṫ −∂iT

−L̇i δi
j − ∂jL

i

)

,

show that the metric perturbation variables transform as

ψ̃ = ψ − Ṫ −HT

φ̃ = φ+ HT +
1

3
∂iL

i

B̃i = Bi + ∂iT − L̇i

Ẽij = Eij − ∂〈iLj〉 ,

where H ≡ ȧ/a, spatial indices are raised and lowered with δij and angled brackets
around indices denote the symmetric trace-free part.

(iii) The peculiar velocity of matter, vi, transforms as ṽi = vi + L̇i. Give a physical
interpretation of this result.

(iv) For scalar perturbations (Eij = ∂〈i∂j〉E, Bi = ∂iB, vi = ∂iv etc.), the intrinsic
curvature of constant-time hypersurfaces can be shown to be

a2 (3)R = 4∇2

(

φ+
1

3
∇

2E

)

.

Use this to show that the intrinsic curvature of comoving hypersurfaces – those
orthogonal to the matter worldlines – can be written as a2 (3)Rco = −4∇2R, where

R = −φ−
1

3
∇

2E + H(B + v) .

Verify the gauge-invariance of this expression for R.
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(v) In the conformal Newtonian gauge (B = E = 0), the perturbed Einstein equations
for the case of adiabatic pressure perturbations and vanishing anisotropic stress are

φ̇+ Hφ = −4πGa2(ρ̄+ P̄ )v

∇
2φ = 4πGa2[δρ− 3H(ρ̄+ P̄ )v]

φ̈+ 3Hφ̇+ (2Ḣ + H
2)φ = 4πGa2( ˙̄P/ ˙̄ρ)δρ ,

and φ = ψ, where δρ is the energy density perturbation and ρ̄ and P̄ are the
background energy density and pressure respectively. By expressing R in terms of
φ in the Newtonian gauge, or otherwise, show that

−4πGa2(ρ̄+ P̄ )Ṙ =
H

˙̄P
˙̄ρ

∇
2φ .

[You may wish to use the Friedmann equation H2 − Ḣ = 4πGa2(ρ̄ + P̄ ).] Noting
that R ∼ φ on super-Hubble scales, establish that R is constant in time on such
scales.

(vi) Briefly comment on the significance of the constancy of R for relating fluctuations
produced during inflation to cosmological observables.
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4 Outline the quantum generation of almost scale-invariant fluctuations δΦ in a light
scalar field during inflation with power spectrum

PδΦ(k) =

(

Hk

2π

)2

,

where Hk is the Hubble parameter when the mode of wavenumber k exits the Hubble
radius.

Tensor perturbations of the metric take the form

ds2 = a2(η)
[

dη2 − (δij + 2ETij) dx
idxj

]

,

where E T
ij is symmetric, trace-free and δik∂kE

T
ij = 0 . The Einstein-Hilbert action to

second-order in ETij is

S(2) =
M2

Pl

2

∫

dη d3
x a2

[

Ė T
ij Ė

T ij − ∂iE
T
jk δ

il∂lE
T jk

]

,

where MPl is the reduced Planck mass, overdots denote differentiation with respect to
conformal time η, and spatial indices are raised and lowered with δij .

(i) Derive the classical equation of motion for ETij and show that on super-Hubble scales

it has solutions with ETij constant in time.

(ii) By expanding ETij in Fourier modes as

ETij(η,x) =
∑

p=±2

∫

d3
k

(2π)3/2
M

(p)
ij (k)ψ(p)(η,k) eik·x ,

where the symmetric, trace-free polarization tensors M
(p)
ij (k) are perpendicular to

k and satisfy M
(p)
ij (k)[M (q) ij(k)]∗ = δpq and [M

(p)
ij (k)]∗ = M

(p)
ij (−k), show that the

action can be written as

S(2) =
M2

Pl

2

∑

p=±2

∫

dηd3
k a2

[

ψ̇(p)(k)ψ̇∗

(p)(k) − k2ψ(p)(k)ψ∗

(p)(k)
]

.

(iii) By comparing to the action for a massless real scalar field,

S(2) =
1

2

∫

dη d3
x a2

{

[∂η(δΦ)]2 − (∇δΦ)2
}

,

argue that tensor perturbations of the metric behave like two independent massless
scalar fields with MPlψ(p)(η,k) → δΦ(η,k) for each polarization and hence that
inflation generates tensor perturbations with

〈ψ(p)(k)ψ∗

(q)(k
′)〉 =

2π2

k3
δpqPψ(k)δ(k − k

′)

on super-Hubble scales, where Pψ(k) = PδΦ(k)/M2
Pl.
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(iv) For inflation driven by a slowly-rolling scalar field with potential V (Φ̄), use the
slow-roll approximation

H2
≈

1

3M2

Pl

V (Φ̄) , 3H∂tΦ̄ ≈ −V ′(Φ̄) ,

to show that the tensor spectral index, defined by

nt ≡
d lnPψ(k)

d ln k
,

is approximately equal to −2 ǫV , where the slow-roll parameter ǫV ≡
1

2
M2

Pl
(V ′/V )2 .
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