MATHEMATICAL TRIPOS Part III

Monday, 31 May, 2010 $\,$ 9:00 am to 12:00 pm $\,$

PAPER 5

METHODS IN ANALYSIS

Attempt no more than **THREE** questions. There are **FIVE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

1

(a) Fix $n \in \mathbb{N}$, and $1 . Show that the dual of <math>L^p(\mathbb{R}^n)$ is the space $L^q(\mathbb{R}^n)$, where $1 < q < \infty$ is such that 1/p + 1/q = 1 (in other words, show that there is an isometric isomorphism between $(L^p(\mathbb{R}^n))^*$ and $L^q(\mathbb{R}^n)$).

[You may use the following fact without proving it. If K is a closed linear subspace of $L^p(\mathbb{R}^n)$, and if $f \in L^p(\mathbb{R}^n)$ is not in K, then there exists $h \in K$ with $\inf_{q \in K} ||f - g||_{L^p} = ||f - h||_{L^p}$ and such that

$$\int |f-h|^{p-2} \left(\overline{f-h}\right)g = 0$$

for all $g \in K$.]

(b) State and prove the Banach-Alaoglu Theorem for $L^p(\mathbb{R}^n)$, for 1 .

[You may use the fact that $L^p(\mathbb{R}^n)$ is separable for all 1 without proving it.]

(c) Show with an example that the Banach-Alaoglu Theorem fails if p = 1.

 $\mathbf{2}$

(a) State and prove the Hardy-Littlewood-Sobolev inequality.

(b) For a measurable function $f : \mathbb{R}^n \to \mathbb{C}$ and q > 1, define

$$\langle f \rangle_{w,q} = \sup_{\alpha > 0} \alpha |\{x \in \mathbb{R}^n : |f(x)| > \alpha\}|^{1/q}$$

 $||f||_{w,q} = \sup_A |A|^{-1/q'} \int_A |f(x)| \, dx \, .$

In the definition of $||f||_{w,q}$, the supremum is taken over all measurable sets A with $|A| < \infty$, and 1/q + 1/q' = 1. Show that there exist $C_{1,q}, C_{2,q} > 0$ such that

$$C_{1,q}\langle f \rangle_{w,q} \leq ||f||_{w,q} \leq C_{2,q}\langle f \rangle_{w,q}.$$

for all measurable functions $f : \mathbb{R}^n \to \mathbb{C}$.

CAMBRIDGE

3

(a) Assume that $n \ge 3$. Suppose that $f, f_j \in H^1(\mathbb{R}^n)$ for every $j \in \mathbb{N}$ are such that $f_j \to f$ weakly in $H^1(\mathbb{R}^n)$ as $j \to \infty$. Suppose that $\Omega \subset \mathbb{R}^n$ is a bounded set and that χ_{Ω} denotes the characteristic function of Ω . Show that $\chi_{\Omega} f_j \to \chi_{\Omega} f$ strongly in $L^q(\mathbb{R}^n)$, for all q < 2n/(n-2).

(b) State and prove the Poincaré inequality for $f \in W^{1,p}(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is a bounded, connected, open set having the cone-property, and where p < n.

[In the proof you can make use of the Rellich-Kondrashov Theorem on general sets having the cone-property.]

4

(a) Prove that the maps defined by

$$\begin{aligned} \mathrm{PV}\frac{1}{x}(\phi) &= \lim_{\varepsilon \to 0} \left[\int_{-\infty}^{-\varepsilon} dx \, \frac{\phi(x)}{x} + \int_{\varepsilon}^{\infty} dx \, \frac{\phi(x)}{x} \right] \\ \frac{1}{x+i0} \left(\phi\right) &= \lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} dx \, \frac{1}{x+i\varepsilon} \phi(x) \end{aligned}$$

for all $\phi \in \mathcal{D}(\mathbb{R})$ are distributions (PV stands for "Principal Value"). Show moreover that

$$\frac{1}{x+i0} = \mathrm{PV}\,\frac{1}{x} + i\pi\delta$$

where $\delta(\phi) = \phi(0)$ for all $\phi \in \mathcal{D}(\mathbb{R})$.

(b) Let f_j be a sequence in $H^1(\mathbb{R}^n)$. Assume that there exist $g, h_1, \ldots, h_n \in L^2(\mathbb{R}^n)$ such that $f_j \to g$ weakly in $L^2(\mathbb{R}^n)$ and $\partial_\ell f_j \to h_\ell$ weakly in $L^2(\mathbb{R}^n)$ for every $\ell = 1, \ldots, n$, as $j \to \infty$. Prove that $g \in H^1(\mathbb{R}^n)$ and that $\partial_\ell g = h_\ell$ for every $\ell = 1, \ldots, n$.

UNIVERSITY OF

4

 $\mathbf{5}$

(a) Suppose that $\Omega \subset \mathbb{R}^n$ is open and let $f \in L^1_{loc}(\Omega)$ be real valued. What does it mean for f to be *subharmonic* on Ω ? What does it mean for f to be *superharmonic* on Ω ? What does it mean for f to be *harmonic* on Ω ?

(b) State and prove the strong maximum principle for subharmonic functions.

(c) State and prove Harnack's inequality.

(d) Suppose that u_j is a sequence of harmonic functions on Ω with $u_j \to u$ pointwise and such that u_j is uniformly bounded on any compact subset $K \subset \Omega$. Prove that $u_j \to u$ uniformly on every compact subset $K \subset \Omega$ and that u is harmonic (you should assume here that the function $u_j = \tilde{u}_j$ is given by the representative of the equivalence class of u_j which is continuous and harmonic at every point $x \in \Omega$).

END OF PAPER