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(a) Fix n ∈ N, and 1 < p < ∞ . Show that the dual of Lp(Rn) is the space Lq(Rn), where
1 < q < ∞ is such that 1/p + 1/q = 1 (in other words, show that there is an isometric
isomorphism between (Lp(Rn))∗ and Lq(Rn)).

[You may use the following fact without proving it.

If K is a closed linear subspace of Lp(Rn), and if f ∈ Lp(Rn) is not in K, then there exists

h ∈ K with infg∈K ‖f − g‖Lp = ‖f − h‖Lp and such that

∫
|f − h|p−2 (f − h) g = 0

for all g ∈ K .]

(b) State and prove the Banach-Alaoglu Theorem for Lp(Rn), for 1 < p < ∞.

[You may use the fact that Lp(Rn) is separable for all 1 < p < ∞ without proving it.]

(c) Show with an example that the Banach-Alaoglu Theorem fails if p = 1 .
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(a) State and prove the Hardy-Littlewood-Sobolev inequality.

(b) For a measurable function f : R
n → C and q > 1, define

〈f〉w,q = sup
α>0

α |{x ∈ R
n : |f(x)| > α}|1/q

‖f‖w,q = sup
A

|A|−1/q′
∫

A
|f(x)| dx .

In the definition of ‖f‖w,q, the supremum is taken over all measurable sets A with |A| < ∞,
and 1/q + 1/q′ = 1 . Show that there exist C1,q, C2,q > 0 such that

C1,q〈f〉w,q 6 ‖f‖w,q 6 C2,q〈f〉w,q .

for all measurable functions f : R
n → C .
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(a) Assume that n > 3 . Suppose that f, fj ∈ H1(Rn) for every j ∈ N are such that
fj → f weakly in H1(Rn) as j → ∞. Suppose that Ω ⊂ R

n is a bounded set and that χΩ

denotes the characteristic function of Ω. Show that χΩ fj → χΩ f strongly in Lq(Rn), for
all q < 2n/(n − 2).

(b) State and prove the Poincaré inequality for f ∈ W 1,p(Ω), where Ω ⊂ R
n is a bounded,

connected, open set having the cone-property, and where p < n .

[In the proof you can make use of the Rellich-Kondrashov Theorem on general sets having

the cone-property.]
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(a) Prove that the maps defined by

PV
1

x
(φ) = lim

ε→0

[
∫

−ε

−∞

dx
φ(x)

x
+

∫

∞

ε

dx
φ(x)

x

]

1

x + i0
(φ) = lim

ε→0

∫

∞

−∞

dx
1

x + iε
φ(x)

for all φ ∈ D(R) are distributions (PV stands for “Principal Value”). Show moreover that

1

x + i0
= PV

1

x
+ iπδ

where δ(φ) = φ(0) for all φ ∈ D(R).

(b) Let fj be a sequence in H1(Rn). Assume that there exist g, h1, . . . , hn ∈ L2(Rn) such
that fj → g weakly in L2(Rn) and ∂ℓfj → hℓ weakly in L2(Rn) for every ℓ = 1, . . . , n ,
as j → ∞ . Prove that g ∈ H1(Rn) and that ∂ℓg = hℓ for every ℓ = 1, . . . , n .
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(a) Suppose that Ω ⊂ R
n is open and let f ∈ L1

loc
(Ω) be real valued. What does it mean

for f to be subharmonic on Ω? What does it mean for f to be superharmonic on Ω? What
does it mean for f to be harmonic on Ω?

(b) State and prove the strong maximum principle for subharmonic functions.

(c) State and prove Harnack’s inequality.

(d) Suppose that uj is a sequence of harmonic functions on Ω with uj → u pointwise and
such that uj is uniformly bounded on any compact subset K ⊂ Ω. Prove that uj → u

uniformly on every compact subset K ⊂ Ω and that u is harmonic (you should assume
here that the function uj = ũj is given by the representative of the equivalence class of uj

which is continuous and harmonic at every point x ∈ Ω).

END OF PAPER
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