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The following standard gate notation is used in this paper. Note that I denotes the identity
operator throughout.

H H =
1√
2

(

|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|
)

X X = |0〉〈1| + |1〉〈0|

Z Z = |0〉〈0| − |1〉〈1|

•
��������

CX = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X

•
•

CZ = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z

•
•
��������

Toffoli = (|00〉〈00| + |01〉〈01| + |10〉〈10|) ⊗ I + |11〉〈11| ⊗ X

NM
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This question involves Grover’s search algorithm

|0〉 H

Uf

V
Uf

V

· · ·

Uf

V

NM








|0〉 H · · ·
NM








...
... · · · ...

|0〉 H · · ·
NM








|1〉 H · · ·

in which the oracle Uf is applied k times, there are n+ 1 qubits, and

Uf =

2
n−1
∑

x =0

1
∑

y = 0

|x〉 〈x| ⊗ |y + f(x) mod 2〉 〈y|

V = H⊗n(2 |0〉 〈0| − I)H⊗n .

(a) Consider the case in which

f(x) = δx,a =

{

1 if x = a
0 if x 6= a

for a ∈ {0, 1, . . . 2n − 1}. Using the result that

∣

∣

∣
〈φ| ((2 |ψ〉 〈ψ| − I) (I − 2 |φ〉 〈φ|))k |ψ〉

∣

∣

∣

2

= sin2 ((2k + 1)α) ,

where |ψ〉 and |φ〉 are any two normalised states and α = sin−1 |〈φ|ψ〉| , show that
the final measurement in the above circuit gives a with probability sin2((2k + 1)θ),
where θ = sin−1

(

1/
√

2n
)

.

(b) Now consider the case in which f(x) = 0 for all x. What is the probability
distribution for the measurement results in this case?

(c) Given the promise that either f(x) = 0 for all x, or f(x) = δx,a for some unknown
a ∈ {0, 1, . . . 2n−1} , give an algorithm to determine which of these two possibilities
is correct with probability of success at least 3/4 for all n > 1 , which requires
O(

√
2n) uses of the oracle.

Part III, Paper 49 [TURN OVER



4

2

A graph state is obtained by preparing a qubit in the |+〉 state for each node in
a graph, where |±〉 = 1

√

2
(|0〉 ± |1〉), and then applying a CZ gate along each edge of

the graph. Any quantum computation can be carried out by performing a sequence of
single-qubit measurements on an appropriate graph state.

Of particular interest are single-qubit phase measurements, characterised by projec-
tors {|v0(θ)〉 〈v0(θ)| , |v1(θ)〉 〈v1(θ)|} for θ ∈ [0, 2π] which satisfy

(

|vr(θ)〉 〈vr(θ)| ⊗ I
)

CZ |ψ〉 |+〉 =
1√
2

(

I ⊗XrU(θ)
)

|vr(θ)〉 |ψ〉

for all |ψ〉, where U(θ) = |+〉 〈0| + e−iθ |−〉 〈1| and r ∈ {0, 1}.

(a) Prove the relation U(θ)X = e−iθZU(−θ).

(b) Show how to simulate the quantum circuit

|+〉 U(α) U(β)
NM






 → k

by a sequence of single qubit measurements on an appropriate graph state, and
deterministic classical processing of the results. Your procedure should generate a
bit k with the same probability distribution as the circuit.

(c) Prove that

U(β)U(α) |+〉 = e−i α

2

(

cos
(α

2

)

|+〉 + i sin
(α

2

)

e−iβ |−〉
)

.

(d) Suppose that Alice has the first two qubits of the three qubit graph state
(I ⊗ CZ)(CZ ⊗ I) |+〉 |+〉 |+〉, and Bob has the third qubit. Alice is also given
two angles α, β ∈ [0, 2π]. Give a protocol in which Alice sends only two classical
bits to Bob, after which Bob is left with a qubit in the state U(β)U(α) |+〉, up to
an irrelevant global phase factor.
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Consider the circuit below showing a unitary coding and error correction scheme,
where the error E is also unitary.

Encoding Error Detection Recovery Decoding

|ψ〉 • •

E

• �������� • •

|0〉 �������� • �������� ��������

|0〉 �������� • • �������� ��������

|0〉 �������� �������� • • X • X

|0〉 �������� �������� • X • X •

︷ ︸︸ ︷︷ ︸︸ ︷

We say that the circuit protects against the error E if for any |ψ〉 the output state is the
tensor product of |ψ〉 for the top qubit with any state for the remaining four qubits.

(a) Briefly explain the structure of the circuit, and give the output state when
E = X ⊗ I ⊗ I, corresponding to a bit-flip error on the top qubit.

(b) Find the reduced density operator ρ describing the state of the top output qubit
when the error is E = H ⊗ I ⊗ I and |ψ〉 = α |0〉 + β |1〉.

(c) Show that if the circuit protects against errors E1 and E2, it will also protect against
an error given by

E = αE1 + βE2 ,

where α and β are any complex numbers such that E is unitary.

(d) How would you change the circuit to protect against the four error cases

E = I ⊗ I ⊗ I ,

E = Z ⊗ I ⊗ I ,

E = I ⊗ Z ⊗ I ,

E = I ⊗ I ⊗ Z .
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Consider the set of single-qubit unitary gates described by

Rm = |0〉 〈0| + exp

(

i
2πm

2n

)

|1〉 〈1| ,

where m ∈ {0, 1, . . . 2n − 1} and n is a known positive integer.

Suppose that you are given an unlimited supply of one particular gate Ra from this
set, where a ∈ {0, 1, . . . 2n − 1} is unknown.

(a) Show that the n qubit state

|ψ〉 =
1√
2n

2
n−1
∑

x =0

exp

(

2πi ax

2n

)

|x〉

is given by

|ψ〉 =
(

R 2
n−1

a ⊗R 2
n−2

a ⊗ . . . ⊗Ra

)

H⊗n |0〉 ,

and hence can be prepared using Ra gates.

(b) Prove that we can obtain the unknown integer a by applying the inverse Fourier
transform F † to |ψ〉, given by

F † =
1√
2n

2
n−1
∑

k =0

2
n−1
∑

y = 0

exp

(−2πiky

2n

)

|y〉 〈k| ,

and then measuring the resulting state in the computational basis.

(c) If a is odd, show that R k
a = R l

a if and only if (k − l) mod 2n = 0, where k and l

are integers. Hence prove that by repeatedly applying Ra when a is odd we can
generate the complete set of gates Rm for all m ∈ {0, 1, . . . 2n − 1} .

(d) Suppose that we want to approximate the gate R(θ) = |0〉 〈0| + eiθ |1〉 〈1| for an
arbitrary θ ∈ [0, 2π] using a gate from the discrete set Rm. If Rm = R(θ+ δ), show
that

|Rm |φ〉 −R(θ) |φ〉| 6 |δ|
for all normalised single qubit states |φ〉.
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