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Explain Derrick’s theorem on the non-existence of finite energy static solutions for
a scalar field theory in three or more space dimensions.

Explain how the concept of non-topological soliton can lead to the existence of soliton
solutions in complex scalar field theories in any space dimension.

For the equation in one space dimension

∂2φ

∂t2
−

∂2φ

∂x2
+ φ = |φ|2φ , φ(t, x) ∈ C

there exist non-topological solitons of the form

φ(t, x) = e iωt f(x) with ω2 < 1 ,

where f(x) = f(−x) ∈ R and lim x→±∞(|f(x)| + |f ′(x)|) = 0 . It is given explicitly by

f(x) =
√

2(1 − ω2) sech((1 − ω2)1/2 x) .

(You do not need to show that this is a solution.) Show, either from the equation or from
the formula for f , that

(f ′)2 = (1 − ω2) f2 − f4/2 .

Write down the Lorentz transformations of these solitons to obtain solutions
describing solitons moving along straight lines x = x0 + ut at arbitrary velocity u ∈
(−1,+1). Write down expressions (as integrals) for the energy E and momentum P of
these solutions at fixed time t, and show that they obey the relativistic energy-momentum
relation E2 = P 2 + M2 with

M =

∫

+∞

−∞

[

(f ′)2 + ω2f2
]

dx .

[You do not need to evaluate this integral explicitly.]
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Derive the Euler-Lagrange equation of motion for the pure SU(2) Yang-Mills energy
on four dimensional Euclidean space R

4

V =

∫
R4

F a
µν F a

µν d4x

(Here F a
µν is the field associated to the gauge potential A a

µ , and both take values in the

Lie algebra su(2) on which a standard orthonormal basis ea = − i
2
σa , where σa are the

Pauli matrices, is used. Greek letters are for spatial indices µ, ν . . . ∈ {1, 2, 3, 4} and the
su(2) indices a . . . take values in {1, 2, 3}; the summation convention is assumed.)

Define what it means for F to be anti-self-dual. State and prove the Bianchi identity,
and hence show that if F is anti-self-dual the equation of motion is automatically satisfied.

Show that the anti-self-dual solutions give minimum values of V amongst all gauge
potentials with finite energy V < ∞ and having a fixed given value for the integral

∫
R4

ǫµνκλ F a
µν F a

κλ d4x . (1)

What is the significance of the integral (1)?
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Consider the following generalization of the two dimensional static abelian Higgs
model, with energy

V (A,Φ) =
1

2

∫
R2

1

|Φ|2
B2 + |(∇− iA)Φ|2 +

|Φ|2

4
(1 − |Φ|2)2 d2x

where Φ(x) ∈ C and A = A1 dx1 + A2 dx2 is the magnetic potential with magnetic
field B = ∂1A2 − ∂2A1 . You may assume that all fields are smooth, and that
B, |(∇− iA)Φ|, |1 − |Φ|2| decay to zero rapidly as |x| → ∞ and

∫
R2

B d2x = lim
R→+∞

∫
|x|=R

Aj dxj = 2πN

for some positive integer N .

Write down the second order Euler-Lagrange equations of motion associated to V .

Work out a Bogomolny decomposition for V , and derive a pair of first order
equations for A,Φ whose solutions would give minimum energy solutions to the Euler-
Lagrange equations.

Derive a second order equation for u = ln |Φ|2 and explain how this equation could
be used to produce multi-vortex solutions of the first order equations which you previously
derived.
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Explain by means of examples the notion of symmetry for gauge theories, illustrating
your answer with particular reference to the radial symmetry of the ’t-Hooft-Polyakov
monopole solutions:

Φa(x) = f(r)
xa

r
, Aa

i (x) = ǫ iaj xjα(r) r = |x| (1)

for the static SU(2) Yang-Mills-Higgs theory derived from the energy functional:

Vλ(A,Φ) =

∫

R3

[

B a
i B a

i + Di Φ
aDi Φ

a + λ(1 − Φa Φa)
]

d3x

(Here B a
i = 1

2
ǫijk F a

jk where F a
jk is the field associated to the gauge potential A a

j , and
Φa is the Higgs field, and all these fields take values in the Lie algebra su(2) on which a
standard orthonormal basis ea = − i

2
σa , where σa are the Pauli matrices, is used. The

spatial and su(2) indices i, j . . . and a . . . take values in {1, 2, 3}, and the summation
convention is assumed. The covariant derivative is DkΦ = ∇kΦ + [Ak,Φ].)

Write down the Euler-Lagrange equations of motion associated to the energy
functional Vλ.

The following formulae give the form of the magnetic field B a
k and the covariant

derivative DkΦ
a which follow for the radially symmetric monopoles above:

B a
k =

(

rα′ + 2α
)

δak −

(

α′

r
− α2

)

xaxk (2)

and

Dk Φa =

(

f

r
+ rαf

)

δak +
1

r

(

(f

r

)

′

− αf

)

xaxk (3)

Derive (3) from (1), and show that the Bogomolny equations

B a
k = −Dk Φa . (4)

reduce to a pair of coupled ordinary differential equations for α and f . (You do not need

to solve these equations.)

Prove that any solution of (4) obeys the Euler-Lagrange equations of motion for the
energy functional Vλ = 0 .
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